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1

Introduction

Cluster Analysis is the mathematical study of methods for recognizing natural groups
within a class of entities.

This is a common type of definition for the discipline of cluster analysis, and it is unsatis-
factory in at least one respect. However, this cause for dissatisfaction must be welcomed,
since it points directly to some of the essential questions and problems in cluster analy-
sis. These essential aspects will be briefly discussed in this introduction, followed by an
account of the main contribution of the thesis, the Markov Cluster Process, a cluster pro-
cess designed within the setting of graphs. This setting defines a relatively young area
in cluster analysis referred to as graph clustering, which has connections to the clearly
scoped field of graph partitioning. Clustering and graph-clustering methods are also
studied in the large research area labelled pattern recognition. These disciplines and the
applications studied therein form the natural habitat for the Markov Cluster Algorithm.
Their relative positions are sketched, anticipating a more thorough topography in the
first part of this thesis.

The Markov Cluster Process (abbreviated MCL process) defines a sequence of stochastic
matrices by alternation of two operators on a generating matrix. It is basically all that is
needed for the clustering of graphs, but it is useful to distinguish between the algorithm
and the algebraic process employed by the algorithm. The study of mathematical prop-
erties thus belongs to the process proper, and aspects such as interpretation and scaling
belong to the algorithm or a particular implementation of the algorithm. The second
part of this thesis covers the conceptual and theoretical foundation of the Markov Clus-
ter (abbreviated MCL) Algorithm and Process. Other proposals for graph clustering are
discussed, and several classic mathematical results are presented which are relevant in
the broad perspective of graph clustering and graph partitioning, in particular the rela-
tionship between graph spectra and connectivity properties. The third part of the thesis
is concerned with algorithmic issues such as complexity, scalability, and implementation,
and various types of experiments and benchmarks establishing the particular strengths
and weaknesses of the algorithm.

The thesis aims at an audience with a mathematical background. A marked exception is
the appendix A cluster miscellany on page 149, which gives a bird’s eye view of various
aspects of cluster analysis. Among them are the history of the discipline, the role of the
computer, and the etymology of some of the words naming concepts central to cluster
analysis and the Markov Cluster Algorithm. The organization of this introduction largely
mirrors the structure of the remainder of the thesis, consisting of the three parts Cluster
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2 INTRODUCTION

Analysis and Graph Clustering, The Markov Cluster Process, and Markov Cluster Experi-
ments respectively. The introduction concludes with a detailed account of the structure
and contents of the thesis.

1.1 Cluster analysis and graph clustering

The definition given above is a common denominator of the definitions found in cluster
monographs. It is rather dry, but that is a shortcoming inherent in definitions in gen-
eral. More importantly, it is vague. There is nothing wrong with the highly indeterminate
entities, as this indicates that methods are studied in abstracto, without studying a spe-
cific type of entity like for example man or meteorite. The problem lies with the word
‘natural’, as anyone who has ever attempted to use the word argumentatively may con-
firm. What a person judges to be natural is in general heavily influenced by personality,
world context, a priori knowledge, and implicit or explicit expectations. If attention is
restricted to the grouping of visual stimuli into patterns by the eye and mind, it is seen
that this process is really a complex interaction of low-level cognitive functions (which
can be situated in the eye) and high-level functions (representing contextual and emo-
tional stimuli). Witness for example Figure 1, adapted from [151]. What are the natural
groups? It depends. There are several clouds of data points. On the left they may be
seen to form a ring with a sphere in its centre, or the two may be seen as one big sphere,
or each cloud may be seen as a sphere in its own right. In general, if a ring is seen, then
it is ‘natural’ to see one long stretched shape on the right, as this needs the same kind
of linking required for forming the ring. In this instance, there is a tendency to scale
the perceived objects such that they are balanced. The way in which cluster structure
is perceived locally is affected by the overall perceived cluster structure. High-level and
low-level cognitive functions interact in this process, and aspects such as balancedness
and regularity compete with each other (see the cluster miscellany on page 149 for ex-
amples). In the automated recognition of cluster structure, this interaction of high-level
objectives with low-level data cues implies that it is unlikely to find good algorithms that
work from data to solution in a one-way fashion, whereas ‘looping’ algorithms are diffi-
cult to analyse and understand. Dimensionality is an important and inherent part of the
problem, effectively ruling out optimization approaches.

There are many problems and desiderata in cluster analysis that have a cognitive flavour.
Examples are the extent to which different scales are perceived or permitted, the ex-
tent to which symmetry and regularity influence the grouping, the range of shapes and
combinations of shapes that is recognized (e.g. thin and stretched, compact sphere-like,
curved), whether certain shapes are preferable to others, and whether there is the pos-
sibility that data points are classified as noise or outlier. The overall desideratum is to
obtain balanced clustering solutions with respect to these dimensions, and the overall
problem is how to achieve this. The significance of this cognitive flavour is that it is too
much to expect a single method to produce a best or most natural grouping in each in-
stance, due to the adaptive nature of the word ‘natural’. Furthermore, if the recognition
process needs to take high-level a priori knowledge into account, then the task of recog-
nition will have to be split up among different units and methods, modelling different
levels of cognition. Cluster analysis comes down to bootstrapping in a setting with no
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Figure 1. How many groups?

a priori knowledge at all except for the raw data. From a mathematical point of view,
cluster analysis is the last step in a progression of category sorting problems, preceded
by e.g. classification (where the classes are known) and discriminant analysis.

1.1.1 Vector clustering and graph clustering. Applications are numerous in cluster
analysis, and these have led to a bewildering multitude of methods. However, classic
applications generally have one thing in common: They assume that entities are rep-
resented by vectors, describing how each entity scores on a set of characteristics or
features. The dissimilarity between two entities is calculated as a distance between the
respective vectors describing them. This implies that the dissimilarity corresponds with
a distance in a Euclidean geometry and that it is very explicit; it is immediately available.
Geometric notions such as centre of gravity, convex hull, and density naturally come into
play. Graphs are objects that have a much more combinatorial nature, as witnessed by
notions such as degree (number of neighbours), path, cycle, connectedness, et cetera.
Edge weights usually do not correspond with a distance or proximity embeddable in a
Euclidean geometry, nor need they resemble a metric. I refer to the two settings respec-
tively as vector clustering and graph clustering.

The graph model and the vector model do not exclude one another, but one model may
inspire methods which are hard to conceive in the other model, and less fit to apply
there. The MCL process was designed to meet the specific challenge of finding cluster
structure in simple graphs, where dissimilarity between vertices is implicitly defined by
the connectivity characteristics of the graph. Vector methods have little to offer for
the graph model, except that a generic paradigm such as single link clustering can be
given meaning in the graph model as well. Conversely, many methods in the vector
model construct objects such as proximity graphs and neighbourhood graphs, mostly as
a notational convenience. For these it is interesting to investigate the conditions under
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which graph methods can be sensibly applied to such derived graphs. This issue is
discussed in Section 3.3 and Chapter 10.

1.1.2 Applications in graph clustering. The current need for and development of clus-
ter methods in the setting of graphs is mostly found within the field of graph parti-
tioning, where clustering is also referred to as coarsening, and in the area of pattern
recognition. Clustering serves as a preprocessing step in some partitioning methods;
this issue is introduced below and expanded in Chapter 3. Pattern recognition sciences
can be viewed as the natural surroundings for the whole of cluster analysis from an
application point of view. Due to its fundamental and generic cognitive nature the
clustering problem occurs in various solutions for pattern recognition tasks, often as
an intermediate processing step in layered methods. Another reason why the pattern
recognition sciences are interesting is that many problems and methods are formulated
in terms of graphs. This is natural in view of the fact that higher-level conceptual infor-
mation is often stored in the form of graphs, possibly with typed arcs. There are two
stochastic/graph-based models which suggest some kinship with the MCL algorithm:
Hidden Markov models and Markov Random Fields (discussed in Chapter 2). The kinship
is rather distant; the foremost significance is that it demonstrates the versatility and
power of stochastic graph theory applied to recognition problems. With the advent of
the wired1 and hyperlinked era the graph model is likely to gain further in significance.

1.1.3 Graph clustering and graph partitioning. Cluster analysis in the setting of graphs
is closely related to the field of graph partitioning, where methods are studied to find
the optimal partition of a graph given certain restrictions. The generic meaning of ‘clus-
tering’ is in principle exactly that of ‘partition’. The difference is that the semantics
of ‘clustering’ change when combined with adjectives such as ‘overlapping’ and ‘hierar-
chic’. A partition is strictly defined as a division of some set S into subsets satisfying a)
all pairs of subsets are disjoint and b) the union of all subsets yields S (these and other
definitions and naming conventions are introduced in Chapter 4).

In graph partitioning the required partition sizes are specified in advance. The objective
is to minimize some cost function associated with links connecting different partition
elements. Thus the burden of finding natural groups disappears. The graphs which
are to be partitioned are sometimes extremely homogeneous, like for example meshes
and grids. The concept of ‘natural groups’ is hard to apply to such graphs. However,
graphs possessing natural groups do occur in graph partitioning: The graph in Figure 2
is taken from the article A computational study of graph partitioning [55]. If natural
groups are present then a clustering of the graph may aid in finding a good partition,
if the granularity of the clustering is fine compared with the granularity of the required
partition sizes. There is a small and rather isolated stream of publications on graph
clustering in the setting of circuit lay-out. One cause for this isolation is that the primary
data-model is that of a hypergraph with nodes that can be of different type, another is the
cohesive nature of the research in this area. The relationship between graph clustering
and graph partitioning is further discussed in Chapter 2.

1Wired in the sense of connected; the connections may well be wireless.
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Figure 2. A geometric graph.

1.2 The Markov Cluster Algorithm

The main contribution of this thesis is a powerful new cluster algorithm with many good
properties, called the Markov Cluster Algorithm or MCL algorithm. It was designed within
the mathematical setting of graphs and inspired by a simple paradigm (Section 1.2.1 be-
low), naturally leading to the formulation of an algebraic process for stochastic matrices
called the MCL process. This process forms the engine of the MCL algorithm; one of the
algorithm’s particular assets is that it does not contain high-level procedural rules for
the assembling, splitting, or joining of groups.

The problems and aims described in the previous section apply as much to graph cluster-
ing as they do to the field of clustering at large. Thus far few methods have been formu-
lated which make distinct use of the topology offered by graphs. The methods that have
been formulated have not yet found their way into the cluster analysis monographs, the
main reason being that the graph model is much of a new kid on the block. A detailed
account is given in Chapter 2. It should be mentioned that many classical methods in
cluster analysis are formulated in such an abstract manner that it is easy to apply them
in the setting of graphs. Peculiarly, methods such as found in the single-linkage fam-
ily even allow a graph-theoretical formulation, but the graph-theoretical concepts that
are used are neither very sophisticated nor powerful. The experiments in Chapter 10
indicate that this is unavoidable.

The graph in Figure 2 with 150 nodes, also used in [55], will be used throughout this
chapter as the running example. The article [55] is about graph partitioning, and this
type of geometric graph is often used in the field. Two nodes are connected if the dis-
tance between them is at most

√
8 units. The strength of a bond is inversely related to

the distance, and corresponds with its grey level. Note that this is a peculiar type of



6 INTRODUCTION

graph because the similarity function on the nodes is derived from their depicted loca-
tion (which means that a simple transformation step makes the graph embeddable in
Euclidean space). Most example graphs used throughout this thesis have the property
that they allow a somewhat pleasing pictorial representation, for obvious reasons. One
should be aware — and convince oneself — that the working of the MCL algorithm does
not depend on the availability of such a representation.

1.2.1 The graph clustering paradigm. The graph clustering paradigm postulates that
‘natural’ groups in graphs, the groups that are sought and not known, have the following
property:

A random walk in G that visits a dense cluster will likely not leave the cluster until many
of its vertices have been visited.

Variants of this idea also inspired two cluster algorithms proposed in the setting of graph
partitioning [75, 174]. Interestingly, these algorithms take a completely different turn
compared with the approach described here — an issue further discussed in Chapter 5.

At the heart of the MCL algorithm lies the idea to simulate flow within a graph, to pro-
mote flow where the current is strong, and to demote flow where the current is weak. If
natural groups are present in the graph, then according to the paradigm current across
borders between different groups will wither away, thus revealing cluster structure in
the graph.

Simulating flow through a graph is easily done by transforming it into a Markov graph2,
i.e. a graph where for all nodes the weights of outgoing arcs sum to one. Flow can
be expanded by computing powers of the associated stochastic (Markov) matrix, which
amounts to the usual discrete Markov process. This is not sufficient in itself, as the
Markov process does not exhibit cluster structure in its underlying graph.

The paradigm is empowered by inserting a new operator into the Markov process, called
inflation. Whereas flow expansion is represented by the usual matrix product, flow infla-
tion is represented by the entry-wise Hadamard–Schur product combined with a diagonal
scaling. The inflation operator is responsible for both strengthening and weakening of
current. The expansion operator is responsible for allowing flow to connect different
regions of the graph.

The resulting algebraic process is called the Markov Cluster Process or MCL process. The
process converges quadratically in the neighbourhood of so called doubly idempotent
matrices (idempotent under both expansion and inflation).

1.2.2 Putting the paradigm to work. It turns out that the MCL process is appealing both
in theory and in practice. In terms of flow the process brings about exactly the behaviour
as expected according to the graph cluster paradigm. In the limit matrices, which are
doubly idempotent, flow has fully stabilized. The indices of a doubly idempotent matrix

2Using the standard definition of a random walk on a graph.
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Figure 3. Successive stages of flow simulation by the MCL process.

(nodes of the associated graph) can either be classified as attractors or as nodes which
are being attracted by attractors (Theorem 1 on page 57). The attractor systems of the
matrix (corresponding with a complete subgraph of the associated graph) each induce a
cluster which consists of the attractor system and all nodes that it attracts (Definition 8
on page 58). In this thesis a weakly connected component of a directed graph G is defined
as a maximal subgraph of G which contains at least one strongly connected component C
of G (i.e. a subgraph in which there is a path between every ordered pair of nodes),
together with all nodes x in G for which there is a path in G going from x to an element
of C. The clustering associated with a doubly idempotent matrix thus corresponds with
all weakly connected components of the associated graph. Overlap can occur if nodes
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are attracted to more than one attractor system, but this phenomenon has only been
observed so far if the overlapping part of clusters is left invariant by an automorphism
of the input graph (Section 10.2).

The MCL process is illustrated in Figure 3 for the geometric graph in Figure 2. Four
iterands are depicted from left to right and top to bottom. For each node, at most sixteen
neighbours are shown. The bottom right graph corresponds with the limit from this
particular MCL process. The degree of shading of a bond between two nodes indicates
the maximum value of flow, taken over the two directions: the darker the bond the
larger the maximum. The degree of shading of a node indicates the total amount of
incoming flow. Thus, a dark bond between a white node and a black node indicates
that the maximum flow value is found in the direction of the dark node, and that hardly
any flow is going in the other direction. The bottom right graph represents a situation
where flow is constant; the dark nodes are attractors and the bonds indicate which nodes
are attracted to them. The corresponding matrix is idempotent. The picture contains all
necessary information needed to reconstruct the matrix — the limit of an MCL process is
in general highly structured. The bottom right graph generically induces a clustering of
the input graph by taking as clusters all the weakly connected components (Definition 8
in Chapter 6).

1.2.3 Mathematics behind the MCL process. The MCL process consists of alternation of
expansion and inflation, which are both operators converting one stochastic matrix into
another. The limits which may result from an MCL process are nonnegative idempotent
stochastic matrices. It is proven in Chapter 6 that the process converges quadratically
around these limit points.

Expansion, which is just normal matrix multiplication, belongs to the language of linear
algebra. It has been studied specifically in the setting of nonnegative matrices, and even
more focused research exists in the setting of Markov matrices. The image of a stochastic
matrix M under inflation with parameter r is the product M◦r dt, where M◦r denotes
the Hadamard power and dt is a diagonal matrix such that the product is stochastic
again. Under a certain (weak) condition there is a basis in which inflation is represented
by Hadamard–Schur products only (Chapter 7). Inflation is a highly nonlinear operator,
which severely impedes the development of mathematical tools for describing its inter-
action with expansion. Unfortunately, the many results in Hadamard–Schur theory are
of little use even for solely describing inflation, because the relevant spectral inequalities
go the wrong way. In this thesis I develop structure theory for the class of so called diag-
onally positive semi-definite matrices, which is preserved by both inflation and expansion.
These matrices are shown to posses structure generalizing the structure present in the
limits of the MCL process. The spectral working of the inflation parameter on these ma-
trices can be described qualitatively in terms of their associated structure. In general,
the iterands of any MCL process with a symmetric generating matrix are guaranteed to
be diagonally symmetric, and for the standard parametrization it is guaranteed that all
even iterands are also diagonally positive-semidefinite.
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There is a clear relationship between the working of the MCL process and the spectral
properties of respectively the generating matrix, the iterands, and the limit (Section 7.2).
The process is well described as a stochastic uncoupling process, and it has long been
known that large subdominant eigenvalues of nonnegative matrices correspond with
the phenomenon of uncoupling. In some cases this uncoupling is truly annoying, as it
impedes for example the computation of the eigenvector corresponding with the domi-
nant eigenvalue. A remedy for this is found in the beautiful theory of stochastic uncou-
pling and Perron uncoupling. Another example comes from the theory of rapidly mixing
Markov chains, where chains are rapidly mixing iff the subdominant eigenvalues are well
separated from the dominant eigenvalue (Chapter 8). Most relevant to the material pre-
sented here though are the cases where uncoupling is actually desirable. In Chapter 8
the basic results underlying spectral methods in graph partitioning are described, and
some of this material is applied to an example used in the exposition of the MCL process.
A well-known theorem of Fiedler for nonnegative symmetric matrices, which is part of
the theoretical foundation of graph partitioning, is shown to generalize very easily to-
wards nonnegative diagonally symmetric matrices. A less well known3 lemma by Powers
for irreducible symmetric matrices, which satisfactorily explains the working of spectral
methods, is shown to generalize4 towards nonnegative irreducible matrices, and is also
applied to a running example used throughout the thesis.

There are two areas of research which may provide additional insights into (special cases
of) the MCL process. In both areas concepts are studied which can be linked to both
expansion and inflation. These are respectively the theory of symmetric circulants, in
particular with respect to majorization aspects (Section 6.4), and the theory associated
with Hilbert’s distance for nonnegative vectors (Section 7.4). In this thesis the basic
relationships are established, and ideas for further research are sketched.

1.2.4 Benefits. In addition to the fact that the limit of the MCL process allows a generic
cluster interpretation (Theorem 1, page 57, and Definition 8, page 58), one of the main
theoretical results of this thesis is that the iterands of the MCL process allow such inter-
pretation as well (Theorem 9, page 81). Further benefits of the Markov Cluster process
and algorithm are listed below.

• The MCL process forms the entire chassis and engine of the MCL algorithm. This
means that the formulation of the algorithm is highly simple and elegant, as the
algorithm basically consists of alternation of two different operators on matrices,
followed by interpretation of the resulting limit. There are no high-level proce-
dural instructions for assembling, joining, or splitting groups.

• In cluster analysis heuristic and optimization approaches prevail, and there is
in general a lack of (computationally feasible) mathematical concepts relating to
cluster structure. It is a valuable result that the matrix iterands and limits of
a simple algebraic process, the MCL process, allow interpretation in terms of
cluster structure.

3But probably part of the collective graph partitioning subconscious.
4In an entirely straightforward manner.
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• By varying parameters in the MCL process, clusterings of different granularity are
found. In terms of the previous analogy, the steering controls come for free with
the engine. The number of groups can not and need not be specified in advance,
but the algorithm can be tuned to different contexts.

• The issue ‘how many clusters?’ is not dealt with in an arbitrary manner, but
rather by strong internal logic. Cluster structure leaves its marks on the cluster
process, and the flow parameters control the granularity of the cluster imprint.

• The rate of convergence of the MCL process, and projection of the iterands af-
terwards onto the resulting clustering, give hooks for unsupervised parameter
adjustment.

• The limit of the MCL process is very sparse, and its iterands are sparse in a
weighted sense. This implies that the algorithm scales very well. Given certain
sparseness conditions, pruning can be incorporated into the algorithm resulting
in a complexity of O(Nk2), where N is the number of nodes, and where k is the
average or maximum number of neighbours that nodes are allowed to have.

1.2.5 Limitations. Of course, the MCL algorithm is not a panacea, and has limitations as
well. Problem instances in which the diameters of the clusters are not too large allow
a regime of pruning while maintaining the quality of the clusterings retrieved. If the
diameter grows large, this approach becomes infeasible (Chapter 11). For one thing, this
limits the applicability of the MCL algorithm to derived graphs in the vector model (e.g.
neighbourhood graphs).

1.3 MCL experiments and benchmarking

The standardized comparison of cluster methods on common series of problems is al-
together non-existent in cluster analysis. This is a deplorable situation, even though
such standardized comparison (i.e. benchmarking) invites thorny problems. An obsta-
cle might be that benchmarking more or less requires that the quality of a solution is
measurable in terms of a cost function on clusterings. It is non-trivial to devise a cost
function for clusterings of arbitrary sizes and distribution, but still doable. A bigger
problem is that cost functions inevitably favour the detection of certain shapes above
others, e.g. spherical above stretched or vice versa. The main implication is that cluster-
ing by optimization of a cost function has severe drawbacks if clusters can be of mixed
type, even disregarding the size of the search space. These issues have no impact on
benchmarking, as the combination of the type of problem instance and the cost function
used can be tuned in advance.

Most evidence presented in cluster analysis research is expository or occasional. Com-
mon examples do exist, and are sometimes used to support a claim of improved or supe-
rior behaviour. Most often the measurement is by visual judgement or by reasoning. The
situation for graph clustering is not much better. Benchmark graphs do exist in graph
partitioning, but these are in the form of netlists rather than normal graphs. Netlists are
converted to normal graphs in order to prepare them for both clustering (or equivalently
coarsening) and partitioning, but the conversion step is not standardized. Benchmarking
is common practice for the resulting partition, but not so for the intermediate clustering
step.
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Figure 4. The visual impact of permuting an incidence matrix according to cluster structure.

This thesis also contains several examples of the occasional kind. Additionally, in Chap-
ter 12 a fairly generic mechanism is proposed for random generation of test-graphs with
hooks for controlling the density characteristics. This ensures that a good a priori clus-
tering is known. The MCL algorithm is applied to these test graphs, and the resulting
clusterings are compared to the a priori clustering by means of a performance criterion
and a metric defined on the space of partitions of a set of fixed cardinality. A generic per-
formance criterion for weighted graphs is derived in Chapter 9, by stepwise refinement
of a particularly appealing though naive criterion for simple graphs. The metric defined
on the space of partitions is useful in judging continuity properties by comparing clus-
terings at different levels of granularity, and for comparing retrieved clusters with the a
priori constructed clusterings.

1.3.1 Graph clustering and incidence matrix block structure. In general, it is difficult
to visualize a graph and a corresponding clustering, because a graph is rather special if
it can be conveniently laid out in the plane. However, the incidence matrix of a graph
allows to some extent visualization of a clustering. This is done by relabelling the nodes
of the graph such that all nodes which are in the same cluster have consecutive labels.
The relabelling corresponds with a permutation of the original incidence matrix. If the
clustering is good, that is, if there are many edges within each cluster and few going out,
this will result in a permuted matrix appearing to have blocks on the diagonal, with a
few nonzero entries scattered throughout the remaining parts of the matrix. Figure 4
shows the incidence matrix of the graph in Figure 2 on the left, with the nodes ordered
coordinate-wise, left to right and top to bottom. The matrix on the right hand side is
the incidence matrix where nodes are labelled such that the labelling is aligned with the
clustering corresponding with the bottom right picture in Figure 3. The contrast between
the two representations is remarkable. The black/white structure of some of the blocks
shows that some clusters still allow a natural subdivision, which is confirmed by a closer
inspection of the clustering in Figure 3 and the input graph in Figure 2.
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1.4 Organization

The remainder of the thesis is organized in much the same way as this introduction.
Part I contains two chapters. Chapter 2 is concerned with the position of cluster analysis
as a data analysis and a pattern recognition science. The position of graph clustering
within cluster analysis is sketched in Chapter 3, and related graph problems are dis-
cussed, in particular the relationship between graph clustering and graph partitioning.
Some of the ideas in these chapters were first formulated in [44].

The second part is entirely devoted to the formulation and study of the MCL process and
the MCL algorithm. Notations and definitions are covered in Chapter 4. The chapter after
that introduces various graph clustering proposals previously made, which can roughly
be categorized as respectively combinatorial and probabilistic approaches. It is shown
that these approaches rely on the same abstract principle. The material in Chapters 5
and 6 was published in the technical report [45]. It covers the basic mathematics needed
to connect the limits of the MCL process to clusterings of graphs. It is shown that the
MCL process distributes over the Kronecker product, and a categorization of equilibrium
states is given. Convergence of the process towards these states is treated in depth,
and it is shown that the clusterings associated with certain instable equilibrium states
are stable under perturbations of the states5. Special graphs on which expansion and
inflation act as each others inverse are derived, which share the automorphism group of
a ring graph. The corresponding matrices are symmetric circulants.

A large part of Chapter 7 is contained in an article submitted for publication [46]. It
is shown that the inflation operator Γr maps the class of diagonally symmetric matrices
onto itself for r > 0, and that Γr maps the class of diagonally positive semi-definite matri-
ces onto itself for r ∈ IN (Section 7.1). Diagonally positive semi-definite (dpsd) matrices
are then shown to posses structural properties which generalize the structural proper-
ties of nonnegative idempotent matrices, which are the generic limits of the MCL process,
and which need not be dpsd (Section 7.2). A clear connection between the two is provided
by the extreme parametrization of Γr , by setting r = ∞. For M stochastic and dpsd, it is
true that Γ∞M is a matrix for which some finite power is nonnegative idempotent. Further
properties of dpsd matrices are derived in terms of two decompositions into rank 1 idem-
potents with specific properties (Section 7.3). The theory of Hilbert’s distance defined
for nonnegative vectors is introduced, and it is shown that in this framework expansion
and inflation can be linked to each other. This yields a simplified proof for one of the
theorems in Chapter 6. Discussions and conjectures make up the last part of Chapter 7.

The relationship between spectrum and cluster structure is further investigated in Chap-
ter 8, where classic (spectral) results basic to the field of graph partitioning are pre-
sented. Two simple generalizations of these results towards dpsd matrices are given and
applied to examples used in Chapter 6. The chapter also contains a section describing
the role of spectral techniques in the field of rapidly mixing Markov chains.

5Except for the phenomenon of overlap, which may occur in clusterings associated with the
MCL process.
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The third part contains material relevant to testing and benchmarking the MCL algo-
rithm, which has not been published yet. A generic performance criterion for clusterings
of weighted graphs is derived in Chapter 9, by a stepwise refinement of a particularly
simple and appealing criterion for simple graphs. The most refined criterion uses a par-
ticular Schur convex function of which several properties are established. The chapter
also introduces a metric defined on the space of partitions, which is useful for com-
paring different clusterings of the same graph. In Chapter 10 the qualitative properties
of the MCL algorithm are studied, using moderately small graphs. The phenomena of
overlap, attractor systems, and the effect of loops and inflation on cluster granularity
are discussed. The MCL algorithm is shown to have strong separating power by apply-
ing it to torus grid graphs (Section 10.5). This is mainly of theoretical interest though,
because subsequently it is demonstrated that clustering of normal grid graphs is very
sensitive to perturbations in the input, in case the diameter of the natural clusters is
large (Section 10.6). This implies that applying the MCL algorithm to neighbourhood
graphs derived from the vector model has its limitations, though the MCL algorithm
works well for random geometric graphs such as in Figure 2. The considerations in this
section also inspire a tentative proposal for border detection in image bitmaps using
information from early iterands of the MCL process (Section 10.7).

Chapter 11 is concerned with scaling the algorithm by incorporation of a pruning step.
Various pruning schemes are considered, and conditions are postulated under which
pruning will not affect the quality of the clusterings retrieved. The C–implementation
and the data structures (implementing sparse matrix operations) used in conducting the
experiments in this thesis are briefly described. In Chapter 12 I report on putting the
MCL algorithm to the test against randomly generated cluster test graphs. These are
constructed in such a way that an a priori clustering is known for which it is guaranteed
in a probabilistic sense that there is no clustering that is evidently better. The MCL algo-
rithm performs well and is very robust under perturbations of the input for this class of
test graphs.
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Cluster Analysis and Graph Clustering





2

Cluster analysis

Cluster analysis came into being as a bundling of exploratory data techniques which
were scattered over many sciences. This embodied an effort to unify and distinguish dif-
ferent frameworks, to separate method from data, and to separate implementation from
method. Methods still exist in multitudes, but the reasons for this are well understood.
Contrasting this numerosity is the prevalence of a single data model in the cluster analy-
sis monographs, namely that where entities are represented by vectors. Special attention
is paid to this issue throughout this chapter and the next, as this thesis is concerned with
a cluster algorithm in the setting of graphs.

In Section 2.1 the position of cluster analysis as an exploratory data analysis science
is summarized. This section is concise, because it is of limited interest for the sub-
ject of graph clustering. A short history of cluster analysis, tied to the perspective of
exploratory data analysis, is found in Section 4 of the appendix A cluster miscellany
(page 154). In Section 2.2 problems and methods from the pattern recognition sciences
are introduced. These are interesting because clustering methods have found employ-
ment there, and because (intermediate) problems and results in pattern recognition are
often phrased in terms of graphs. Two graph based stochastic methods, namely Hid-
den Markov Models and Markov Random Fields, are discussed in order to illustrate the
versatility of stochastic graph concepts and to exemplify the significant conceptual and
mathematical differences between these methods and the MCL process. Section 2.3 is
concerned with the history and characteristics of the research that is collectively la-
belled as cluster analysis, and the extent to which this label corresponds with a coherent
discipline from a mathematical point of view.

2.1 Exploratory data analysis

Cluster analysis is usually seen as the result of cross-fertilization between mathematics
and sciences such as biology, chemistry, medicine, and psychology. The latter provide
the practical applications that yield the problem formulation, while the study of those
problems in an abstract setting belongs to mathematics proper. In this classic setting
(more than a century old now) the nature of the problem formulation is that of exploring
data to see if cohesive structure is present; cluster analysis is then ranged under the flag
of exploratory data analysis. Other mathematical disciplines of this type are discrimi-
nant analysis: assigning objects to (a priori known) classes given a number of possibly
incomplete observations, factor analysis: uncovering correlations between variables by
their observed behaviour, mixture resolving: estimating parameters for mixtures of dis-
tributions (e.g. via the Maximum–Likelihood method), and dispersion analysis: methods
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for detecting the effect of individual factors on the results of an experiment. Among this
list cluster analysis is the most vague in the sense that neither problem nor aim allow
a satisfactory description. The least is known — observations only — and the most is
wanted: a classification of these, resulting in a bootstrapping problem in optima forma.
Usually, the more constrained a problem is, the more this suggests a particular way of
solving it. The reverse is true as well; Cluster analysis is pervaded by a host of different
mathematical techniques (Section 2.3). The most prominent data model in exploratory
data analysis is that were entities are represented by vectors (representing scores on sets
of attributes). I refer to this setting as the vector model. It is also discussed in greater
detail in Section 2.3.

2.2 Pattern recognition sciences

New employment for exploratory techniques has been found in the young but vibrant
field of pattern recognition, along with a host of other techniques from for example
statistical decision theory, signal processing, and linear algebra. In the pattern recog-
nition sciences methods are studied for emulation of cognitive skills, i.e. for detection
or recognition of structure in data. Very often these data correspond with auditory or
visual signals, or with variables which are measured along the coordinates of a two or
three-dimensional space. Examples of this kind are speech recognition, food screening,
matching of fingerprints, machine vision, satellite image processing, and more generally
the processing of geographic, atmospheric, oceanic, or astronomic data. The hardness
of the problems varies widely: the more is known a priori, the easier the problem. The
difficulty of matching problems, where it has to be decided whether a new object is the
same as one out of a collection of known objects, depends highly on the variability of the
object appearances. Iris or fingerprint matching is thus relatively easy, whereas speech
recognition or recognition of 3-D objects is much more difficult. Utterances may vary in
tone, pronunciation, emphasis, colour, and duration, even for a single person. The ap-
pearance of objects may vary according to the angle of view, the orientation of the object,
the viewing distance, the background, the location and intensity of the light source(s),
and the overlap by other objects.

2.2.1 Cluster analysis applications. Some of the applications of cluster analysis in pat-
tern recognition (usually corresponding with an intermediate processing stage) as listed
by Jain and Dubes in [94] are: grammatical inference, speech and speaker recognition,
image segmentation, and image matching. In general, the role of cluster analysis is the
joining of primitive data elements in regions or time-frames, which do not yet need to
correspond with high-level objects. Clustering is thus a base method for diminishing
dimensionality. Other applications of clustering in pattern recognition are reducing fea-
ture dimensionality and reducing the dimensionality of a search space (e.g. the set of all
Chinese characters).

2.2.2 The data model in spatial pattern recognition. At first sight image segmentation
and spatial data segmentation seem to fit well within the vector model, as they concern
measurements in Euclidean spaces. However, the data model differs considerably from
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that in exploratory data analysis. In the latter setting, the distribution of the vectors
themselves over the geometry is of interest. In spatial data segmentation the vectors
are just the (x,y) coordinates of pixels or the (x,y, z) coordinates of voxels (the 3-D
equivalent of a pixel). The vectors sample some area, which is usually box-shaped. The
proximity between two vectors is not related to their distance, but defined in terms
of the similarity between the measurements on the corresponding units of the sample
space. Typically, only neighbouring pixels or voxels are considered for the proximity
relationship, as one is interested in finding regions of contiguous units, which are homo-
geneous with respect to the measurements. This localization of the neighbour relation-
ship induces a lattice or grid-like graph. Consequently, graph-theoretical concepts and
techniques play an important role in spatial data segmentation.

This is in fact true for the field of pattern recognition at large. Data may be split up
in collections of primitive patterns. The primitive patterns are to be matched with a
catalogue of generic primitives, while at the same time the collection has to be split into
higher-level patterns representing objects. Examples of primitive patterns are phonemes
in speech recognition and stroke primitives in optical character recognition. In the latter
case, characters can also be viewed as primitives for the word-level, and words can be
viewed as primitives for the sentence level. The important thing is that the interaction or
succession of such primitives is governed by constraints. This induces graphs where the
primitives are nodes and the constraints induce and exclude neighbour relations. The
fertile combination of graphs and stochastic models in pattern recognition is the subject
of the following section.

2.2.3 Graph–based stochastic methods. Two stochastic methods in pattern recogni-
tion deserve special mention, namely Hidden Markov Models (HMM) and Markov Ran-
dom Fields (MRF). These techniques draw upon the same mathematical apparatus as the
MCL process — which is where the resemblance more or less stops. The common de-
nominator of HMM, MRF, and MCL is that they all use stochastic concepts in the setting
of graphs.

A hidden Markov model is a probabilistic model for data observed in a sequential fash-
ion, based on two primary assumptions. The first assumption is that the observed data
arise from a mixture of K probability distributions corresponding with K states. The
second assumption is that there is a discrete Markov chain generating the observed data
by visiting the K states according to the Markov model. The hidden aspect of the model
arises from the fact that the state sequence is not directly observed. Instead, the state
sequence must be inferred from a sequence of observed data using the probability model
(adapted from [170], page 373). The most noteworthy application of the hidden Markov
model is found in speech recognition, where it is used both for the recognition of words
in terms of phonemes (which are the states), and the construction of sentences from
words. In both cases the sequence of primitives (phonemes or words) is governed by
constraints, in the sense that the true state of the previously observed primitive induces
a probability distribution on the most likely state of the currently observed primitive.
This is modelled by a Markov chain of transition probabilities. In [170] computational
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biology is listed as another area where HMMs have found employment, and [157] names
the applications lip reading and face tracking.

A Markov Random Field is the counterpart of a one-dimensional Markov chain, where
the bidirectionality of past–present–future is superseded by the spatial concept of neigh-
bouring sites. The origin of this concept is found in the Ising model for ferromagnetism,
and in physics it is applied to statistical mechanical systems exhibiting phase transi-
tions ([100], page 120). In pattern recognition, MRFs are applied to fundamental tasks
such as segmentation and restoration of images, edge detection, and texture analysis
and synthesis.

As an example, consider a rectangular array of pixels, where each pixel may assume one
of G grey levels. Typically an MRF is used to model the fact that the grey levels of neigh-
bouring pixels are correlated. This correlation reflects higher-level properties of an im-
age, such as the presence of regions, boundaries, and texture. An MRF yields the tools to
infer such high-level properties from the low-level pixel information by stochastic tech-
niques. It is assumed that the overall shading of the array is the result of a stochastic
process indexed by the pixels. An MRF requires a symmetric neighbourhood structure
defined for the pixels; the simplest case is that where only adjacent pixels are neigh-
bours. The property that defines an MRF is that The conditional probability that a pixel
assumes a grey level, given the grey levels of all other pixels, is equal to the conditional
probability that it assumes the grey level given only the grey levels of its neighbouring
pixels.

The state space of the MRF is thus enormous; it amounts to all possible grey colourings
of the array. An MRF can also be used to model the presence of edges or boundaries in
a picture, by creating an edge array similar to the pixel array1. The edge array can be ob-
served only indirectly by looking at the pixel array. The equivalence of MRFs with Gibbs
distributions allows the modelling of expectations regarding boundaries — smoothness,
continuity — in the MRF via so called clique potentials. Combining the intensity and
boundary processes yields a compound MRF which can be used to restore noisy images,
detect edges, detect regions, or a combination of these [33]. This requires specification of
a measurement model for the observed image (i.e. choice of the stochastic model, param-
eter estimation). A typical approach for image restoration is: A maximum a posteriori
probability estimate of the image based on the noisy observations then [after specifica-
tion of the measurement model] is found by minimizing the posterior Gibbs energy via
simulated annealing ([63], page 499). The MRF model is very powerful in its flexibility
— diverse types of interaction (corresponding e.g. with texture, regions, and edges) be-
tween pixels can be modelled, and it is backed up by a sound mathematical apparatus.
However, its computational requirements are considerable, and the issues of supervised
and unsupervised parameter learning are no less difficult than they are in general.

The Hidden Markov Model and the theory of Markov Random Fields illustrate the versa-
tility of the graph model in pattern recognition, and its use in inferencing higher-level
structure by stochastic techniques. The stochastic concepts used in the HMM and MRF

1A horizontal respectively vertical edge is thought to separate two vertically respectively hor-
izontally adjacent pixels.
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and their applications are closely tied to a stochastic view on the realization and struc-
ture of patterns in real life. This situation is somewhat different for the MCL algorithm:
its formulation uses the notion of flow, utilizing the presence of cohesive structure,
rather than drawing upon a model for the realization of this structure and retrieving it
via a posteriori optimization.

2.2.4 The position of cluster analysis. Publications on cluster analysis in the setting of
pattern recognition are usually rather theoretical, and blend in with publications in the
more traditional line of exploratory data research. Most publications which are solely
concerned with clustering contain either a new cluster algorithm or suggestions for im-
provement of existing algorithms. A few publications focusing on the graph model do
exist, but these are mostly concerned with neighbourhood graphs (see Section 3.3 in
the next chapter).

Clustering methods are occasionally mentioned as a tool for segmentation or as a nec-
essary intermediate processing step in various applications, but I have not found any
systematic comparison of different methods plugged into the same hole. The most likely
reason for this is that the role of clustering is not sufficiently essential, as it is not a ded-
icated solution for a specific problem. Benchmarking is in principle very well possible
and Chapter 12 is devoted to this issue.

2.3 Methods and concepts in multitudes

Cluster analysis is a field that has always been driven by a demand from various dis-
ciplines engaged in exploratory data analysis, like for example taxonomy, chemistry,
medicine, psychiatry, market research, et cetera. The monographs on cluster analysis
give long listings of applications, see e.g. Anderberg [10], Everitt [54], and Mirkin [132].
This wide range of interest groups, most of which do not have common channels of
communication, has resulted in an enormous variety of clustering methods. Adding to
this is the elusive nature of the problem. There is no obvious step immediately trans-
forming the loose formulation of the problem into a strategy for solving it. Rather, ten
different people will come up with ten different methods, and they may well come up
with twenty, because the problem is attractive in that it seems intuitively so simple, yet
in practice so hard. On a related note, Blashfield et al report in [22] on a questionnaire
regarding the use of cluster software, with fifty-three respondents yielding fifty different
programs and packages. It is sometimes said that there are as many cluster methods as
there are cluster analysis users. This thesis indeed offers Yet Another Cluster Method2.
The method operates in a setting that is relatively new to cluster analysis though (see the
next chapter), it depends on an algebraic process that has not been studied before, and
this process has properties that make it particularly suitable as a means for detecting
cluster structure (Parts II and III of this thesis).

2This is yet another Yet Another qualification; see page 160.
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2.3.1 Conceptual confusion. Different disciplines use different concepts and different
wordings, so cluster–related research has yielded a plethora of methods and concepts.
Kaufman and Rousseeuw put it this way in [103], page vii: Rather than giving an extensive
survey of clustering methods, leaving the user with a bewildering multitude of methods to
choose from (...). They have a positive attitude, as they write on page 3:

(...) automatic classification is a very young scientific discipline in vigorous de-
velopment, as can be seen from the thousands of articles scattered over many
periodicals (mostly journals of statistics, biology, psychometrics, computer sci-
ence, and marketing). Nowadays, automatic classification is establishing itself as
an independent scientific discipline (...)

The qualification ‘very young’ is debatable though, as the first survey articles and mono-
graphs in cluster analysis began to appear in the sixties and early seventies. The purpose
of Kaufman and Rousseeuw was to write an applied book for the general user. In the field
of classification, the book by Jardine and Sibson [95] is a long standing reference which
aims to give a mathematical account of the methods employed in taxonomy (the theory
of classification of living entities). The significance of this book is enlarged by its em-
phasis on mathematics rather than limited by its focus on taxonomy. The tone of their
introduction is somewhat more dejected ([95], page page ix):

Terminological confusion and the conceptual confusions which they conceal have
loomed large in the development of methods of automatic classification. Partly
this has arisen from the parallel development of related methods under different
names in biology, pattern recognition, psychology, linguistics, archaeology, and
sociology. Partly it has arisen from failure by mathematicians working in the var-
ious fields to realize how diverse are the problems included under the headings
‘classification’, ‘taxonomy’, and ‘data analysis’.

In mathematics, the elusive nature of the vector cluster problem is reflected in the fact
that there is no particular piece of mathematical machinery just right for the job. The
result is that many mathematical tools and disciplines are used in modelling of the prob-
lem domain and formulation of cluster strategies. The list includes matrix algebra, geom-
etry, metric spaces, statistics, set theory, graph theory, information theory, and several
combinations out of these. Witness Mirkin in [132], page xiv: (...) the reader is assumed to
have an introductory background in calculus, linear algebra, graph theory, combinatorial
optimization, elementary set theory and logic, and statistics and multivariate statistics.
The words introductory and elementary should be noted though. Cluster analysis draws
upon the different disciplines mainly for formulation of both problems and strategies
sought to apply to them. With few exceptions, not much new material is being devel-
oped nor is there much need to apply existing theorems.

Clustering has also been presented in the setting of computing paradigms such as sim-
ulated annealing [97, 106], genetic algorithms, and neural networks. In these instances
however, the computing paradigms embraced the clustering problem rather than vice
versa, and the approaches have not yet swept the area.
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2.3.2 The prevalent data model in cluster analysis. Cluster Analysis is the mathemat-
ical study of methods for recognizing natural groups within a class of entities. Consider
this definition once more. It speaks of ‘natural groups’, indicating that entities are some-
how related to each other. Apparently, there is a notion of greater or lesser distance or
similarity between entities, or it would be impossible to discriminate between different
pairs and constellations of entities. It is actually difficult to imagine a class of entities
where such a notion is lacking; the art of discrimination is that essential to sensory sys-
tems, intelligence, and awareness. Whereas this digression may seem too aspiring, it
appears that attempts to formulate the essence of cluster analysis readily lead to such
cognitive and philosophical issues. For example, Sokal writes in [156], page 1:

But since classification is the ordering of objects by their similarities (...) and ob-
jects can be conceived of in the widest sense including processes and activities
— anything to which a vector of descriptors can be attached, we recognize that
classification transcends human intellectual endeavor and is indeed a fundamen-
tal property of living organisms. Unless they are able to group stimuli into like
kinds so as to establish classes to which favorable or avoidance reactions can be
made, organisms would be ill-adapted for survival.

This kind of comment is frequently found in the literature, and it spells out the bur-
densome idea that methods in cluster analysis have to compete with nothing less than
a fundamental property of living organisms. The citation also demonstrates that at the
time of writing (1976) cluster analysis was more or less tied to the framework where
entities are represented by vectors, an observation still valid today. In the framework
each entity is examined with respect to a fixed number of characteristics; this gives a
vector of numbers, and this vector represents the entity. For example, if the entities
are medical records, then the characteristics might be length, weight, age, alcohol con-
sumption, blood pressure, liver thickening, if the entities are meteorite rocks then the
characteristics can be the respective fractions of different types of chemical compounds.
The distance between two entities is then defined to be a function of the difference of
the two corresponding vectors. Usually a scaling of the vectors is involved in order to
weigh different characteristics, and some norm is taken of the difference vector.

This setting is prevalent throughout the cluster analysis literature, and it is the de facto
standard in monographs on the subject — see the list of monographs compiled in the
next section. On the one hand, this persistence of the same data model is hardly surpris-
ing, as it is a highly generic model that apparently suits the existing needs. On the other
hand, there is an interest in clustering algorithms in the graph partitioning community
and occasional other areas, feeding a small but steady stream of publications which is
isolated from the cluster analysis literature at large in terms of references and surveys.
This is discussed in the next chapter.

2.3.3 The coherence of cluster analysis as a discipline. As evidenced in the begin-
ning of this section, the field of cluster analysis is of fragmented heritage. This situ-
ation began to change somewhat with the advent of dedicated conferences and publi-
cation of several monographs on the subject, beginning with the books by Sokal and
Sneath [155] (1963), Jardine and Sibson [95] (1971), Anderberg [10] (1973), Duda and



24 CLUSTER ANALYSIS

Hart [50] (1973), Everitt [54] (1974), and Hartigan [79] (1975). Other often cited refer-
ences are Ryzin [166] (conference proceedings, 1977), Kaufman and Rousseeuw [103]
(1983), Jain and Dubes [94] (1988), Massart and Kaufman [119] (1990), and Mirkin [132]
(1996). These monographs often contain huge collections of references to articles from
different disciplines, and they embody considerable efforts to create a unified approach
to cluster analysis. The citation of Good on page 157 reflects a certain longing for the
field to become whole. The same feeling is occasionally expressed by other researchers.
According to Kaufman and Rousseeuw the era of cluster analysis as an independent sci-
entific discipline has already begun (see the citation on page 22). However, much can be
brought to stand against this point of view, without disputing the viability of the label
‘cluster analysis’ as a flag under which a motley crew sails.

The most prominent reason why cluster analysis is not the home ground of a coherent
scientific community is simply the wide variety of mathematical concepts that can be
employed. No single branch of mathematics is particularly apt for the job, and problems
in cluster analysis defy a clinching formal description. Such a description may emerge,
but the general opinion is that the conditions are unfavourable, as the generic clustering
problem formulation assumes little and aspires much.

A second reason is found in the lack of an application area with a very definite and urgent
need for good clustering algorithms, with common cost functions and benchmarks, and
preferably with problem instances that obey some variant of Moore’s law — a doubling
of the typical problem size every three years or so. Graph partitioning, with its current
emphasis on multilevel approaches, may turn out to provide such pull from the applica-
tion side for cluster methods in the setting of graphs. Otherwise, this is a phenomenon
unfamiliar to cluster analysis, simply because the large majority of applications either
has an exploratory nature, or concerns the embedding of clustering methods in a com-
pound (e.g. recognition) method that is not widely recognized as a fundamental step in
the solution of a problem of general importance and urgency.

All this can be summed up in the observation that researchers in cluster analysis share
neither a common mathematical framework nor a common application area generating
sufficient pull. This does not imply that there is no use for the gathering forces of
monographs and conferences dedicated to the subject. The opposite is true, as there
is without doubt a general interest in clustering methods, and a real danger of wasted
efforts and reinvention of the wheel over and over again. However, the state of affairs in
cluster analysis is that the gathering of efforts does not have a strong synergetic effect.
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Graph clustering

The graph concept is extremely general, and allows a rough categorization in complete
weighted graphs, weighted structured graphs, and simple graphs. These three categories
can be viewed as constituting the two ends and the middle of a spectrum of possibilities.
For convenience I shall assume that weights, if present, are nonnegative. The clustering
problem is one of the few problems which makes sense for all three categories. Until
now it has mainly been studied in the setting of weighted complete graphs, which are
often also metric — in which case it is really better to use the label metric space. I adhere
to the custom that graphs — without further qualification — are simple graphs, which is
in line with common usage. In this chapter I discuss the clustering problem in the setting
of simple graphs, which is in a sense the natural habitat of the MCL algorithm, and the
resemblances and differences with clustering in the setting of complete weighted graphs.
To this end, a brief sketch is given of different types of problems in graph theory.

The research area combinatorial optimization involves graphs from all three categories,
but individual problems (e.g. the Travelling Salesman Problem, the clique problem) are
generally attached to a specific category. Clustering is a sibling of the optimization
problem known as graph partitioning (Section 3.2), which is a well-defined problem in
terms of cost functions. The field of combinatorial optimization appears in the course of
a brief non-exhaustive survey of different branches in graph theory (Section 3.1), which
is interesting because it naturally brings along the issue of tractability. The chapter
concludes with a discussion of the implications of the differences between the vector
model and the graph model for clustering.

3.1 Graphs, structure, and optimization

The concept of a simple graph is tightly associated with the study of its structural prop-
erties. Examples are the study of regular objects such as distance regular graphs, the
study of graph spectra and graph invariants, and the theory of randomly generated
graphs. The latter concept is introduced in some more detail, because it is used in defin-
ing a benchmark model for graph clustering in Chapter 12. A generic model via which
a simple graph on N edges is randomly generated is to independently realize each edge
with some fixed probability p (a parameter in this model). Typical questions in this
branch of random graph theory concern the behaviour of quantities such as the number
of components, the girth, the chromatic number, the maximum clique size, and the di-
ameter, as n goes to infinity. One direction is to hold p fixed and look at the behaviour
of the quantity under consideration; another is to find bounds for p as a function of n
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such that almost every random graph generated by the model has a prescribed property
(e.g. diameter k, k fixed).

In the theory of nonnegative matrices, structural properties of simple graphs are taken
into account, especially regarding the 0/1 structure of matrix powers. Concepts such
as cyclicity and primitivity are needed in order to overcome the complications arising
from this 0/1 structure. A prime application in the theory of Markov matrices is the
classification of states in terms of their graph-theoretical properties, and the complete
understanding of limit matrices in terms of the analytic and structural (with respect to
the underlying graph) properties of the generating matrix.

A different perspective is found in the retrieval or recognition of combinatorial notions
such as above. In this line of research, algorithms are sought to find the diameter of a
graph, the largest clique, a maximum matching, whether a second graph is embeddable
in the first, or whether a simple graph has a Hamiltonian circuit or not. Some of these
problems are doable; they are solvable in polynomial time, like the diameter and the
matching problems. Other problems are extremely hard, like the clique problem and the
problem of telling whether a given graph has a Hamiltonian cycle or not. For these prob-
lems, no algorithm is known that works in polynomial time, and the existence of such an
algorithm would imply that a very large class of hard problems admits polynomial time1

algorithms for their solution. Other problems in this class are (the recognition version
of) the Travelling Salesman Problem, many network flow and scheduling problems, the
satisfiability problem for logic formulas, and (a combinatorial version of) the clustering
problem. Technically, these problems are all in both the class known as NP , and the sub-
class of NP–complete problems. Roughly speaking, the class NP consists of problems
for which it can be verified in polynomial time that a solution to the problem is indeed
what it claims to be. The NP–complete problems are a close-knit party from a complexity
point of view, in the sense that if any NP–complete problem admits a polynomial–time
solution, then so do all NP–complete problems — see [134] for an extensive presentation
of this subject. The subset of problems in NP for which a polynomial algorithm exists
is known as P . The abbreviations NP and P stand for nondeterministic polynomial and
polynomial respectively. Historically, the class NP was first introduced in terms of non-
deterministic Turing machines. The study of this type of problems is generally listed
under the denominator of combinatorial optimization.

3.2 Graph partitioning and clustering

In graph partitioning well–defined problems are studied which closely resemble the prob-
lem of finding good clusterings, in the settings of both simple and weighted graphs re-
spectively. Restricting attention first to the bi-partitioning of a graph, let (S, Sc) denote a
partition of the vertex set V of a graph (V, E) and let Σ(S, Sc) be the total sum of weights
of edges between S and Sc , which is the cost associated with (S, Sc). The maximum
cut problem is to find a partition (S, Sc) which maximizes Σ(S, Sc), and the minimum
quotient cut problem is to find a partition which minimizes Σ(S, SC)/min(|S|, |Sc|). The

1Polynomial in the size of the problem instance; for a graph this is typically the number of
vertices.
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recognition versions of these two problems (i.e. given a number L, is there a partition
with a cost not exceeding L?) are NP–complete; the optimization problems themselves
are NP–hard [62], which means that there is essentially only one way known to prove
that a given solution is optimal; list all other solutions with their associated cost or
yield. In the standard graph partitioning problem, the sizes of the partition elements
are prescribed, and one is asked to minimize the total weight of the edges connecting
nodes in distinct subsets in the partition. Thus sizes mi > 0, i = 1, . . . , k, satisfying
k < n and

∑
mi = n are specified, where n is the size of V , and a partition of V in

subsets Si of size mi is asked which minimizes the given cost function. The fact that
this problem is NP–hard (even for simple graphs and k = 2) implies that it is inadvisable
to seek exact (best) solutions. Instead, the general policy is to devise good heuristics
and approximation algorithms, and to find bounds on the optimal solution. The role of
a cost/yield function is then mainly useful for comparison of different strategies with
respect to common benchmarks. The clustering problem in the setting of simple graphs
and weighted structured graphs is a kind of mixture of the standard graph partitioning
problem with the minimum quotient cut problem, where the fact that the partition may
freely vary is an enormously complicating factor.

3.2.1 Graph partitioning applications. The first large application area of graph parti-
tioning (GP) is found in the setting of sparse matrix multiplication, parallel computation,
and the numerical solving of PDE’s (partial differential equations). Parallel computation
of sparse matrix multiplication requires the distribution of rows to different processors.
Minimizing the amount of communication between processors is a graph partitioning
problem. The computation of so called fill-reducing orderings of sparse matrices for
solving large systems of linear equations can also be formulated as a GP–problem [74].
PDE solvers act on a mesh or grid, and parallel computation of such a solver requires
a partitioning of the mesh, again in order to minimize communication between proces-
sors [53].

The second large application area of graph partitioning is found in ‘VLSI CAD’, or Very
Large Scale Integration (in) Computer Aided Design. In the survey article [8] Alpert and
Kahng list several subfields and application areas (citations below are from [8]):

• Design packaging, which is the partitioning of logic arrays into clustering. “This
problem (...) is still the canonical partitioning application; it arises not only in chip
floorplanning and placement, but also at all other levels of the system design.”

• Partitioning in order to improve mappings from HDL2 descriptions to gate– or
cell–level netlists.

• Estimation of wiring requirements and system performance in high–level synthe-
sis and floorplanning.

• Partitioning supports “the mapping of complex circuit designs onto hundreds or
even thousands of interconnected FPGA’s” (Field–Programmable Gate Array).

• A good partition will “minimize the number of inter-block signals that must be
multiplexed onto the bus architecture of a hardware simulator or mapped to the
global interconnect architecture of a hardware emulator”.

2Hardware Description Language.
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Summing up, partitioning is used to model the distribution of tasks in groups, or the
division of designs in modules, such that there is a minimal degree of interdependency or
connectivity. Other application areas mentioned by Elsner in [53] are hypertext browsing,
geographic information services, and mapping of DNA sequences.

3.2.2 Clustering as a preprocessing step in graph partitioning. There is an important
dichotomy in graph partitioning with respect to the role of clustering. Clustering can be
used as a preprocessing step if natural groups are present, in terms of graph connec-
tivity. This is clearly not the case for meshes and grids, but it is the case in the VLSI
CAD applications introduced above, where the input is most often described in terms of
hypergraphs.

The currently prevailing methods in hypergraph partitioning for VLSI circuits are so-
called multilevel approaches where hypergraphs are first transformed into normal graphs
by some heuristic. Subsequently, the dimensionality of the graph is reduced by cluster-
ing; this is usually referred to as coarsening. Each cluster is contracted to a single node
and edge weights between the new nodes are computed in terms of the edge weights be-
tween the old nodes. The reduced graph is partitioned by (a combination of) dedicated
techniques such as spectral or move-based partitioning.

The statement that multi-level methods are prevalent in graph partitioning (for VLSI
circuits) was communicated by Charles J. Alpert in private correspondence. Graph par-
titioning research experiences rapid growth and development, and seems primarily US–
based. It is a non-trivial task to analyse and classify this research. One reason for this is
the high degree of cohesion. The number of articles with any combination of the phrases
multi-level, multi-way, spectral, hypergraph, circuit, netlist, partitioning, and clustering is
huge — witness e.g. [7, 9, 31, 32, 38, 39, 73, 75, 81, 101, 102, 138, 174]. Spectral tech-
niques are firmly established in graph partitioning, but allow different approaches, e.g.
different transformation steps, use of either the Laplacian of a graph or its adjacency ma-
trix, varying numbers of eigenvectors used, and different ways of mapping eigenspaces
onto partitions. Moreover, spectral techniques are usually part of a larger process such
as the multi-level process described here. Each step in the process has its own merits.
Thus there is a large number of variables, giving way to an impressive proliferation of
research. The spectral theorems which are fundamental to the field are given in Chap-
ter 8, together with simple generalizations towards the class of matrices central to this
thesis, diagonally symmetric matrices.

3.3 Clustering in weighted complete versus simple graphs

The MCL algorithm was designed to meet the challenge of finding cluster structure in
simple graphs. In the data model thus far prevailing in cluster analysis, here termed a
vector model (Section 2.3 in the previous chapter), entities are represented by numerical
scores on attributes. The models are obviously totally different, since the vector model
induces a (metric) Euclidean space, along with geometric notions such as convexity, den-
sity, and centres of gravity (i.e. vector averages), notions not existing in the (simple)
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graph model. Additionally, in the vector model all dissimilarities are immediately avail-
able, but not so in the (simple) graph model. In fact, there is no notion of similarity
between disconnected nodes except for third party support, e.g. the number of paths of
higher length connecting two nodes.

Simple graphs are in a certain sense much closer to the space of partitions (equivalently,
clusterings) than vector–derived data. The class of simple graphs which are disjoint
unions of complete graphs are in a natural 1–1 correspondence with the space of parti-
tions. A disjoint union of simple complete graphs allows only one sensible clustering.
This clustering is perfect for the graph, and conversely, there is no other simple graph for
which the corresponding partition is better justified3. Both partitions and simple graphs
are generalized in the notion of a hypergraph. However, there is not a best constellation
of points in Euclidean space for a given partition. The only candidate is a constellation
where vectors in the same partition element are infinitely close, and where vectors from
different partition elements are infinitely far away from each other.

On the other hand, a cluster hierarchy resulting from a hierarchical cluster method (most
classic methods are of this type) can be interpreted as a tree. If the input data is Eu-
clidean, then it is natural to identify the tree with a tree metric (which satisfies the so
called ultrametric inequality), and consider a cluster method ‘good’ if the tree-metric
produced by it is close to the metric corresponding with the input data. Hazewinkel [80]
proved that single link clustering is optimal if the (metric) distance between two metrics
is taken to be the Lipshitz distance. It is noteworthy that the tree associated with single
link clustering can be derived from the minimal spanning tree of a given dissimilarity
space [88].

What is the relevance of the differences between the data models for clustering in the
respective settings? This is basically answered by considering what it requires to apply
a vector method to the (simple) graph model, and vice versa, what it requires to apply
a graph method to the vector model. For the former, it is in general an insurmountable
obstacle that generalized (dis)similarities are too expensive (in terms of space, and con-
sequently also time) to compute. Dedicated graph methods solve this problem either by
randomization (Section 5.4) or by a combination of localizing and pruning generalized
similarities (the MCL algorithm, Chapter 11).

More can be said about the reverse direction, application of graph methods to vector
data. Methods such as single link and complete link clustering are easily formulated
in terms of threshold graphs associated with a given dissimilarity space (Chapter 4).
This is mostly a notational convenience though, as the methods used for going from
graph to clustering are straightforward and geometrically motivated. For intermediate
to large threshold levels the corresponding threshold graph simply becomes too large to
be represented physically if the dimension of the dissimilarity space is large. Proposals
of a combinatorial nature have been made towards clustering of threshold graphs, but
these are computationally highly infeasible (Section 4.2).

3These considerations form the starting point for the formulation of generic performance
criteria for clusterings of simple and weighted graphs in Chapter 9.
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Another type of graph encountered in the vector model is that of a neighbourhood graph
satisfying certain constraints (see [94] for a detailed account). Examples are the Minimum
Spanning Tree, the Gabriel Graph, the Relative Neighbourhood Graph, and the Delaunay
Triangulation. For example, the Gabriel Graph of a constellation of vectors is defined as
follows. For each pair of vectors (corresponding with entities) a sphere is drawn which
has as centre the geometric mean of the vectors, with radius equal to half the Euclidean
distance between the two vectors. Thus, the coordinates of the two vectors identify
points in Euclidean space lying diametrically opposed on the surface of the sphere. Now,
two entities are connected in the associated Gabriel Graph if no other vector lies in the
sphere associated with the entities. The step from neighbourhood graph to clustering is
made by formulating heuristics for the removal of edges. The connected components of
the resulting graph are then interpreted as clusters. The heuristics are in general local
in nature and are based upon knowledge and/or expectations regarding the process via
which the graph was constructed.

The difficulties in applying graph methods to threshold graphs and neighbourhood
graphs are illustrated in Section 10.6. The MCL algorithm is tested for graphs derived by
a threshold criterion from a grid-like constellation of points, and is shown to produce
undesirable clusterings under certain conditions. The basic problem is that natural
clusters with many elements and with relatively large diameter place severe constraints
on the parametrization of the MCL process needed to retrieve them. This causes the
MCL process to become expensive in terms of space and time requirements. Moreover,
it is easy to find constellations such that the small space of successful parametrizations
disappears entirely. This experiment clearly shows that the MCL algorithm is not well
suited to certain classes of graphs, but it is argued that these limitations apply to a
larger class of (tractable) graph clustering algorithms.
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Notation and definitions

This chapter introduces the terminology needed for graphs, (dis)similarity spaces, clus-
terings, and matrices. Single link and complete link clustering are discussed in some
greater detail, because these are methods typically applied to dissimilarity data derived
from attribute spaces, and are yet often formulated in graph–theoretical terms.

4.1 Graphs

Definition 1. Let V be a finite collection of elements, enumerated v1, . . . , vt.

i) A weighted graph G on V is a pair (V,w), where w is a function mapping pairs
of elements of V to the nonnegative reals: w : V × V → IR≥0.

a) G is called undirected if w is symmetric, it is called directed otherwise.
b) G is said to be irreflexive if there are no loops in G, that is, w(v,v) =

0,∀v ∈ V .
ii) A dissimilarity space D = (V,d) is a pair (V,d), where s is a symmetric function

mapping V ×V to IR≥0, satisfying s(u,v) = 0 ⇐⇒ u = v . The function d is called
a dissimilarity measure or dissimilarity coefficient.

iii) A similarity space is a pair (V, s), where s is a symmetric function mapping V ×
V to IR>0 ∪ {∞}, satisfying s(u,v) = ∞ ⇐⇒ u = v . The function s is called a
similarity measure or similarity coefficient.

The elements in V are called the nodes of G. The dimension of the graph G is defined as
the cardinality t of its node set V .

In this thesis, I shall use similarity coefficients in the exposition of k-path clustering in
Chapter 5.

Let G = (V,w) be a weighted directed graph with |V | = t. The associated matrix of G
lying in IR≥0

t×t , denoted MG, is defined by setting the entry (MG)pq equal to w(vp, vq).
Given a matrix M ∈ IR≥0

N×N , the associated graph of M is written GM , which is the
graph (V,w) with |V | = N and w(vp, vq) =Mpq.

An equivalent way of representing a weighted graph G is by identifying G with a
triple (V, E,w), where the edge set E is a subset of V2 and where w is a positive weight
function defined on E only. A graph represented by such a triple (V, E,w) is in 1–1
correspondence with a graph representation (V,w′) (according to Definition 1), by set-
ting w′(u,v)=a>0 iff e=(u,v)∈E and w(e)=a, and setting w′(u,v)=0 iff e=(u,v) 6∈E.
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The second representation leads to the generalization of graphs called hypergraph. A
weighted hypergraph is a triple (V, E,w) where the hyperedge set E is a subset of the
powerset P(V), and where w is a weight function on E as before.

Matrices and graphs of dimension N are indexed using indices running from 1 to N.
If u,v are nodes for which w(u,v) > 0, I say that there is an arc going from v to u with
weightw(u,v). Then v is called the tail node, and u is called the head node. The reason
for this ordering lies in the fact that graphs will be transformed later on into stochastic
matrices, and that I find it slightly more convenient to work with column stochastic
matrices than with row stochastic matrices. The degree of a node is the number of arcs
originating from it. A graph is called voidfree if every node has degree at least one.

A path of length p in G is a sequence of nodes vi1 , . . . , vip+1 such that w(vik+1 , vik) > 0,
k = 1, . . . , p. The path is called a circuit if i1 = ip+1, it is called a simple path if all
indices ik are distinct, i.e. no circuit is contained in it. A circuit is called a loop if it has
length 1. If the weight function w is symmetric then the arcs (vk, vl) and (vl, vk) are
not distinguished, and G is said to have an edge (vl, vk) with weight w(vl, vk). The two
nodes vl, vk are then said to be connected and to be incident to the edge. A simple
graph is an undirected graph in which every nonzero weight equals 1. The simple graph
on t nodes in which all node pairs u,v,u ≠ v , are connected via an edge (yielding
t(t − 1) edges in all) is denoted by Kt , and is called the complete graph on t nodes. A
weighted directed graph for which w(u,v) > 0,∀u ≠ v , is called a weighted complete
graph. A weighted directed graph for which w(u,v) = 0 for some (or many) pairs (u,v)
is called a weighted structured graph.

Let G = (V,w) be a directed weighted graph. A strongly connected component of G is a
maximal subgraph H such that for every ordered pair of nodes x,y in H there is a path
from x to y in H. If G is undirected, then the strongly connected components are just
called the connected components, and G is called connected if there is just one con-
nected component (equalling G itself). For G directed, a weakly connected components
is a maximal subgraph H containing at least one strongly connected component C and
all nodes x in G such that there is a path in G going from x to an element of C (and thus
to all elements of C). Weakly connected components can thus overlap, but they always
contain at least one strongly connected component not contained in any of the other
weakly connected components.

Let G = (V,w) be a directed weighted graph G = (V,w). In this thesis the interpretation
of the weight function w is that the value w(u,v) gives the capacity of the arc (path
of length 1) going from v to u. Let G be a simple graph, let M = MG be its associated
matrix. The capacity interpretation of the weight function w is very natural in view of
the fact that the pq entry of the kth power Mk gives exactly the number of paths of
length k between vp and vq. This can be verified by a straightforward computation.
The given interpretation of the entries of Mk extends to the class of weighted directed
graphs, by replacing the notion ‘number of paths between two nodes’ with the notion
‘capacity between two nodes’.
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The graph which is formed by adding all loops to G is denoted by G+I. In general, if ∆ is
a nonnegative diagonal matrix, then G+∆ denotes the graph which results from adding
to each node vi in G a loop with weight ∆ii.

4.2 Partitions and clusterings

A partition or clustering of V is a collection of pairwise disjoint sets {V1, . . . , Vd} such
that each set Vi is a nonempty subset of V and the union ∪i=1,... ,dVi is V . A par-
tition P is called ( top respectively bottom1) extreme if respectively P = {V} and
P = {singletons(V)} = {{v1}, . . . , {vt}}. A partition of the form {S, Sc} (where Sc is
the complement of the set S in V ) is called a bipartition of V , it is called balanced
if |S| = |Sc|. For a bipartition the set notation is omitted, and it is sloppily written
as (S, Sc). Given a bipartition (S, Sc), the corresponding characteristic difference vec-
tor x is defined by xi = 1 for vi ∈ S, and xi = −1 for vi ∈ Sc .

A hierarchical clustering of V is a finite ordered list of partitions Pi, i = 1, . . . , n of V ,
such that for all 1 ≤ i < j ≤ n the partition Pj can be formed from Pi by conjoining
elements of Pi, where P1 = {singletons(V)} = {{v1}, . . . , {vt}} and Pn = {V}.

An overlapping clustering of V is a collection of sets {V1, . . . , Vd}, d ∈ N, such that
each set Vi is a nonempty subset of V , the union ∪i=1,... ,dVi is V , and each subset Vi is
not contained in the union of the other subsets Vj, j ≠ i. The latter implies that each
subset Vi contains at least one element not contained in any of the other subsets, and
this in turn implies the inequality d ≤ t.

Let s be a similarity coefficient defined on V = {v1, . . . , vt}. Let s1, . . . , sn be the row
of different values that s assumes on V × V , in strictly descending order and with the
value 0 added. Remember that s(u,u) = ∞, u ∈ V . Thus, ∞ = s1 > s2 > · · · > sn = 0.

The single link clustering of the pair (V, s) is the nested collection of partitions Pi, i =
1, . . . , n, where each Pi is the partition induced by the transitive closure of the relation
in which two elements u,v, are related iff s(u,v) ≥ si. According to this definition, sub-
sequent partitions may be equal, P1 = {singletons(V)}, and Pn = {V}. The fact that at
each similarity level si the single link clustering results from taking the transitive closure
implies that the clustering coincides with the connected components of the threshold
graph of (V, s) at threshold level si. This is simply the graph2 on t nodes where there is
an edge between u and v iff s(u,v) ≥ si.

The complete link clustering of the pair (V, s), is usually procedurally defined as fol-
lows. The bottom partition P1 is again taken as {singletons(V)}. Each clustering Pk,
k > 1, is subsequently defined in terms of Pk−1 by uniting the two clusters Cx and Cy
of Pk−1 for which the threshold level s such that [the subgraph on Cx∪Cy in the threshold
graph of (V, s) at level s is complete] is maximal. Equivalently, Cx and Cy are such that

1The set of all partitions forms a lattice of which these are the top and bottom elements.
2Usually threshold graphs are presented in the setting of dissimilarity spaces, using the edge

defining inequality s(u, v) ≤ si.
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the maximum of the minimal similarity in the restriction of the similarity space (V, s)
to CX∪CY , is assumed for X = x and Y = y . It is not very satisfactory from a mathemat-
ical point of view that the clusterings at a given level depend on the previous clusterings.
It would be more elegant to define a clustering at a given threshold level as all maximal
cliques in the corresponding threshold graph. The drawback is that it will in general
result in an overlapping clustering with many clusters. Moreover, different clusters may
have large overlap and small symmetric difference. Many variants of this type of com-
plete linkage have been suggested [89, 95, 121], by first forming all maximal cliques
at a given threshold level, and subsequently joining clusters (which are cliques) under
the transitive closure of some similarity between clusters, e.g. sharing at least k neigh-
bours. The computational requirements of such methods are huge, and they are mostly
presented as an exercise in mathematical thought.

4.3 Matrices

A column stochastic matrix is a nonnegative matrix in which the entries of each column
sum to one. A matrix is called column allowable if its associated graph is voidfree, that
is, it has no zero columns. Note that a column stochastic matrix is by definition column
allowable.

LetM be a matrix in IRn×n, let α and β both be sequences of distinct indices in the range
1 . . .n. The submatrix of M corresponding with row indices from α and column indices
from β is written M[α|β]. The determinant of a square submatrix is called a minor.
The principal submatrix with both row and column indices from α is written M[α].
Let α be a sequence of distinct indices in the range 1 . . .n, denote by αc the sequence of
indices in 1 . . .n which are not part of α. The matrix M is called irreducible if for all α
containing at least 1 and at most n − 1 indices the submatrix M[α|αc] has at least one
nonzero coordinate. Otherwise M is called reducible. This can also be stated in terms
of graphs. Associate a simple graph G = (V,w) with M (note that it is not assumed
that M is nonnegative3) by setting w(vp, vq) = 1 iff Mpq ≠ 0. Then the existence of a
sequence α such that M[α|αc] has only zero entries implies that there are no arcs in G
going from the subgraph defined on the nodes corresponding with αc to the subgraph
defined on the nodes corresponding with α. Thus M is reducible if the node set of the
associated simple graph G can be split into two (non-empty) parts such that there are no
arcs going from the first part to the other, and it is irreducible otherwise.

The eigenvalues of a square matrix M of dimension n are written λ1(M), . . . , λn(M). If
the eigenvalues are real, then they are written in decreasing order, thus λ1(M) ≥ λ2(M) ≥
· · · ≥ λn(M). This is a strict rule, carried through for the Laplacian (introduced in
Chapter 8) of a graph as well. In general, the modulus of the largest eigenvalue of M is
called the spectral radius of M and is written ρ(M).

Let S be some subset of the reals. Denote the operator which raises a square matrix A
to the tth power, t ∈ S, by Expt . Thus, ExptA = At . This definition is put in such general
terms because the class of diagonally psd matrices (to be introduced later) allows the
introduction of fractional matrix powers in a well-defined way. The entry-wise product

3The concepts of reducibility and irreducibility are in fact usually defined in the more general
setting of complex matrices, but this is not needed here.
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between two matrices A and B of the same dimensions m ×n is called the Hadamard–
Schur product and is denoted by A ◦ B. It has dimensions m × n and is defined by
[A ◦ B]pq = ApqBpq. The Hadamard power (with exponent r ) of a matrix A of dimen-
sionsm×n has the same dimensions, is written A◦r , and is defined by [A◦r ]pq = (Apq)r .

Let A be square of dimension n, and assume some ordering on the set of k-tuples with
distinct indices in {1, . . . , n}. The kth compound of a square matrix A is the matrix of
all minors of order k of A, and is written Compk(A). It has dimension

(
n
k

)
. Its pq entry

is equal to detA[up|uq], where ui is the ith k-tuple of distinct indices in the given
ordering.

Diagonal matrices (square matrices for which all off-diagonal entries are zero) are writ-
ten as dv , where v is the vector of diagonal entries. A circulant matrix is a matrix C
such that Ckl = Ck+1 l+1 for all k and l (counting indices modulo the dimension of the
matrix). This implies that the first (or any) column (or row) of a circulant defines the
matrix. A circulant is written as Cx , where x is its first column vector.

Given a symmetric (hermitian) matrix A, and a real (complex) vector x of fitting dimen-
sion, the scalar x∗Ax is called a symmetric (hermitian) form, where x∗ denotes the
hermitian conjugate of x.

The Perron root of a nonnegative matrix (i.e. a matrix for which all elements are nonneg-
ative) is its spectral radius. It is a fundamental result in Perron–Frobenius theory ([19],
page 26) that the Perron root of a nonnegative matrix A is an eigenvalue of A. The cor-
responding eigenvector is called the Perron vector and is guaranteed to be nonnegative.
If A is irreducible then the Perron vector has no zero coordinates and the Perron root is
a simple eigenvalue of A. An excellent monograph on this and other subjects in the field
of nonnegative matrices is [19].

There are many different subjects in matrix analysis and many textbooks and mono-
graphs on different collections of subjects. I found the following books especially use-
ful: Matrix Analysis by Horn and Johnson [86], Topics in Matrix Analysis by the same
authors [87], Nonnegative Matrices In The Mathematical Sciences by Berman and Plem-
mons [19], Nonnegative Matrices by Minc [130], Non–negative matrices and Markov chains
by Seneta [149], Special matrices and their applications in numerical mathematics by
Fiedler [57], and Matrix Computations by Golub and Van Loan [67].

4.4 Miscellanea

Numerical experiments are described in this thesis, which means that the realm of finite
precision arithmetic is entered. Numerical expressions denote floating point numbers
if and only if a dot is part of the expression. Expressions in which single indices or
subscripted or superscripted simple expressions are enclosed in parentheses denote the
object which results from letting the index run over its natural boundaries. E.g. e(i) de-
notes a vector or a row (the context should leave no doubt which of the two), Tk(i) denotes
the kth row of the matrix T , and (T (i))kl denotes the set of kl entries of the powers of T .
The fact that each of the entries in a row e(i) equals the same constant c is concisely
written as e(i)=c c.
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The graph clustering paradigm

In graph clustering one seeks to divide the node set of a graph into natural groups with
respect to the edge relation. The first section of this chapter gives a brief account of
three related ideas for accomplishing this task. They are formulated in terms of path
numbers, random walks, and shortest paths. In Section 5.2 proposals towards graph
clustering that have a combinatorial nature are discussed. A relaxation of one of them
is the subject of Section 5.3. It is called k-path clustering and uses path numbers to
detect cluster structure via single link clustering. This method links the combinatorial
cluster notions with the MCL algorithm, as the starting point for the MCL algorithm is
a localized version of k-path clustering. In Section 5.4 probabilistic cluster algorithms
based on the ideas in the first section are briefly described. Random walks on graphs
are introduced, corresponding with a localization of the context in which k-path cluster-
ing is applied. The standard way of describing a random walk on a graph associates a
particular discrete Markov chain with the graph, and such is also the setup here. Sec-
tion 5.5 begins with an example of (deterministically computed) random walks on an
undirected graph possessing (weak) cluster structure. The initial characteristics of this
stochastic process (c.q. Markov chain) are similar to phenomena observed in applying
k-path clustering to the same graph (Section 5.3) but in the limit of the process all evi-
dence of cluster structure has withered away. A new operator called inflation is inserted
into the process, and an example run using the same input graph results in a limit which
induces a cluster interpretation of the input graph in a generic way. The MCL algorithm
and MCL process are formally described in the last section of this chapter. The rela-
tionship between the MCL process and cluster interpretation of graphs is the subject of
Chapter 6, together with an analysis of convergence of the MCL process and stability of
the limits with respect to the cluster interpretation. Chapter 7 gives conditions under
which iterands of the process have real c.q. nonnegative spectrum, and which imply the
presence of generalized cluster structure in the iterands.

5.1 Paths, walks, and cluster structure in graphs

What are natural groups? This is in general a difficult problem, but within the framework
of graphs there is a single notion which governs many proposals. This notion can be
worded in different ways. Let G be a graph possessing cluster structure, then alternative
wordings are the following:

a) The number of higher–length paths in G is large for pairs of vertices lying in the same
dense cluster, and small for pairs of vertices belonging to different clusters.
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b) A random walk in G that visits a dense cluster will likely not leave the cluster until many
of its vertices have been visited.

c) Considering all shortest paths between all pairs of vertices of G, links between different
dense clusters are likely to be in many shortest paths.

These three notions are strongly related to each other. The situation can be compared
to driving a car in an unfamiliar city in which different districts are connected by only
a few roads, with many promising looking turns and roads unreachable due to traffic
regulations. Viewing crossings and turns as vertices, and the accessible road segments
between them as edges, the notions given above translate to a) There are many different
ways of driving (not necessarily taking the shortest route) from A to B if A and B are
in the same district, and only few if they are in different districts, under the condition
that the number of roads segments visited is equal; b) Driving around randomly, but in
line with traffic regulations, will keep you in the same district for a long time; c) If the
transportation need of the locals is homogeneously distributed over all departure and
destination points, then the roads connecting different districts will be congested.

The idea now is to measure or sample any of these — higher–length paths, random
walks, shortest paths — and deduce the cluster structure from the behaviour of the
sampled quantities. The cluster structure will manifest itself as a peaked distribution of
the quantities, and conversely, a lack of cluster structure will result in a flat distribution.
The distribution should be easy to compute, and a peaked distribution should have a
straightforward interpretation as a clustering.

I propose to assemble the notions listed above under the denominator of the graph
clustering paradigm, being well aware of the fact that the paradigm label is somewhat
grandiloquent. However, the notions clearly share a common idea that is simple and
elegant in that it gives an abstract and implicit description of cluster structure (rather
than tying it to a particular optimization criterion); in that it is persistent, as it has
surfaced at different times and places1; and in that it is powerful, as it can be tied to
different graph–theoretical concepts, yielding different clustering methods.

The idea of using random walks to derive cluster structure is mainly found within the
graph partitioning community. The various proposals utilizing it are discussed in Sec-
tion 5.4. The following section describes proposals for graph clustering which have a
strong combinatorial nature. One of these, the linkage–based k-path clustering method
forms the connection between combinatorial and randomized methods. The single link-
age paradigm can be seen as the connecting factor. This requires the dismissal of a no-
tion which is seemingly central to single link clustering, namely the global interpretation
of the (dis)similarity function. It is argued that this global interpretation hampers the
combinatorial clustering methods introduced below; the introduction of random walks
naturally requires a localized interpretation of graph connectivity properties.

1The number of occurrences is not large in itself, but it is significant considering the small
number of publications dedicated to graph clustering.
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5.2 Combinatorial cluster notions

In the clustering and pattern recognition communities, proposals have been made to
define clusters in graphs which are more combinatorial in nature. An important con-
tributor in this respect is David Matula, who wrote several articles on the subject. It is
noteworthy that Matula’s publication record (e.g. [120, 121, 122, 150]) indicates that his
primary research interests are in graph theory and discrete mathematics. It seems that
his publications in clustering in the setting of (simple) graphs came too early in the sense
that at the time of writing there was little interest in the clustering community in simple
graphs, except as a means of notation for the description of linkage–based algorithms
such as single link and complete link clustering. In fact, Matula presents several graph
cluster concepts in [121] as a series of refinements splitting the spectrum between single
link and complete link clustering. The presentation of these findings in the setting of
general similarity spaces and threshold graphs indicates that the time was not right for
clustering in the setting of simple graphs per se. I see several reasons why the combina-
torial notions have not caught on, among which the issue of justification in the setting
of threshold graphs and the lack of genuine (simple) graph applications and problems.
Equally important however are the relative intractability of the proposed notions, and
their disposition to produce unbalanced clusterings. Let G = (V, E) be a graph. The
following notions each define subgraphs of G.

k-bond A maximal subgraph S such that each node in S has at least degree k
in S.

k-component A maximal subgraph S such that each pair of nodes in S is joined by
k edge–disjoint paths in S.

k-block A maximal subgraph S such that each pair of nodes in S is joined by
k vertex–disjoint (except for endpoints) paths in S.

Each notion defines a corresponding hierarchical cluster method by letting k vary and
at each level taking as cluster elements all k-objects and all singletons corresponding
with nodes which are not in any k-object, where object may be any of bond, compo-
nent, or block. These methods are hierarchical because every k + 1-object is contained
within a k-object. For k = 1 all three k-notions boil down to the connected compo-
nents of G. Moreover, for fixed k, it is true that every k-block of G is a subgraph of some
k-component, which is in turn a subgraph of some k-bond of G. This implies that the cor-
responding cluster methods are successive refinements, going from bond to component
to block. In the clustering section of the graph partitioning survey article [8] of Alpert
and Kahng one method is mentioned which is a refinement of the k-component method,
namely the (K, L)–connectivity method proposed by Garbers et al in [61]. Nodes are
(K, L)–connected if there exist K edge disjoint paths of length at most L between them.

Matula finds that k-components and k-blocks provide better resolution into cohesive
groupings than k-bonds. The example given here in Figure 5 is taken from the arti-
cle [121], and it shows a graph with its k-blocks, yielding the most refined clusterings.
In this case, the overlapping clustering for k = 3 looks reasonably good, although it is
a pity that the fifth point in the leftmost 2-block ends up as a singleton in the 3-block
clustering.
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Figure 5. Graph with its k-blocks. Figure 6. Graph with its 3-blocks.

The lack of balance is even stronger in the graph which is depicted in Figure 6, together
with its 3-block clustering. For this graph, the 2-block clustering yields the whole vertex
set as a single cluster and the 3-block clustering is very unsatisfactory. This evidence
is neither incidental nor contrived. Rather, it is inherent to the k-object methods. They
are very sensitive to local variations in node degree. Such sensitivity is unwanted in
itself, and in this case leads to unbalanced clusterings. The k-object methods are much
too restrictive in their definition of cohesive structure, especially taking into account the
commonly accepted ‘loose’ objective of clustering. It is reasonable to demand that a
clustering method for simple graphs can recognize disjoint unions of complete (simple)
graphs of different sizes, or complete graphs which are sparsely connected. The k-
object methods clearly fail to do so, and one reason for this is that local variations in
connectivity have severe impact on the retrieved clusters.

Finally, the object methods are highly intractable. Matula [121] and Tomi [161] give time
complexities O(|V |3/2|E|2) for the retrieval of k-blocks and O(min(|V |8/3|E|, |V ||E|2) for
the retrieval of k-components. Among others, the algorithms require the solution of the
minimum cut network flow problem. Since the number of edges |E| is surely at least |V |
for interesting applications, the time complexities are at least cubic in the input size of
the graph.

5.3 k-Path clustering

Of the existing procedural algorithms, single link clustering has the most appealing
mathematical properties. This is precisely because it allows non-procedural interpre-
tations in terms of Minimal Spanning Trees and in terms of approximating metrics by
ultrametrics (trees). See [80] for an extensive treatment of this subject. In this section I
shall discuss a variant of single link clustering for graphs which I call k-path clustering.
This variant is a further relaxation of the k-block and k-component methods, and its
interpretation is related to the interpretation of the MCL algorithm. The basic observa-
tion underlying both methods is the fact that two nodes in some dense region will be
connected by many more paths of length k, k > 1, than two nodes for which there is
no such region. This section is mainly an exposition of ideas, and a few examples are
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studied. The examples are intended to support the heuristic underlying the MCL algo-
rithm, and they provide fruitful insights into the problems and benefits associated with
refinements of graph similarities. k-Path clustering is conceptually much simpler than
k-block and k-component clustering, but in terms of tractability it is only slightly more
viable. It suffers less from a lack of balance in the clusters it produces, but it is still far
from satisfactory in this respect. k-Block, k-component, and k-path clustering were also
proposed by Tamura [160], who was apparently unaware of the work of Matula.

5.3.1 k-path clustering. For k = 1, the k-path clustering method coincides with generic
single link clustering. For k > 1 the method is a straightforward generalization which
refines the similarity coefficient associated with 1-path clustering. Let G = (V,w) be
a graph, where V = {v1, . . . , vt}, let M = MG be the associated matrix of G. For each
integer k > 0, a similarity coefficient Zk,G associated with G on the set V is defined by
setting Zk,G(vi, vj) = ∞, i = j, and

Zk,G(vi, vj) = (Mk)ij, i ≠ j(1)

Note that the values (Mi)pp are disregarded. The quantity (Mk)pq has a straightforward
interpretation as the number of paths of length k between vp and vq; this is the exact sit-
uation if G is a simple graph. If G has dense regions separated by sparse boundaries, it is
reasonable to conjecture that there will be relatively many path connections of length k
with both ends in the same region, compared with the number of path connections hav-
ing both ends in different dense regions. For weighted graphs, the interpretation is in
terms of path capacities rather than paths per se, and the formulation is now that the
path capacities between different dense regions are small compared with the path capac-
ities within a single dense region. The next example is one in which Zk,G does not yet
work as hoped for. It will be seen why and how that can be remedied. For sake of clear
exposition, the examples studied are simple graphs.

5.3.2 Odd and even. The graph G1 in Figure 7 is a tetraeder with flattened tips. It clearly
admits one good non-extreme clustering, namely the one in which each of the flattened
tips, i.e. the four triangles, forms a cluster. The associated matrix M = MG1 , and the
square M2 are shown in Figure 9.

a

b
c

d

Figure 7. Topped tetraeder G1. Figure 8. Bipartite graph G2.
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0 1 1 0 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 1 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 1 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 1 0 0 0
0 1 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 1 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0 0 1 1 0





3 1 1 1 0 0 0 1 0 1 1 0
1 3 1 1 0 0 1 0 1 0 0 1
1 1 3 0 1 1 0 1 0 0 0 1
1 1 0 3 1 1 1 0 0 0 1 0
0 0 1 1 3 1 1 0 0 1 0 1
0 0 1 1 1 3 0 1 1 0 1 0
0 1 0 1 1 0 3 1 1 1 0 0
1 0 1 0 0 1 1 3 1 1 0 0
0 1 0 0 0 1 1 1 3 0 1 1
1 0 0 0 1 0 1 1 0 3 1 1
1 0 0 1 0 1 0 0 1 1 3 1
0 1 1 0 1 0 0 0 1 1 1 3


M =MG1 M2



1 1 1 0 0 0 0 0 0 0 0 1
1 1 1 0 0 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 1 0
0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0
0 1 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 0 1 1 1





4 3 3 1 0 0 0 1 0 1 1 2
3 4 3 1 0 0 1 2 1 0 0 1
3 3 4 2 1 1 0 1 0 0 0 1
1 1 2 4 3 3 1 0 0 0 1 0
0 0 1 3 4 3 1 0 0 1 2 1
0 0 1 3 3 4 2 1 1 0 1 0
0 1 0 1 1 2 4 3 3 1 0 0
1 2 1 0 0 1 3 4 3 1 0 0
0 1 0 0 0 1 3 3 4 2 1 1
1 0 0 0 1 0 1 1 2 4 3 3
1 0 0 1 2 1 0 0 1 3 4 3
2 1 1 0 1 0 0 0 1 3 3 4


M + I (M + I)2

Figure 9. Several matrices associated with G1.

For each of the coefficients Zk,G1 , single link clustering immediately yields the whole
vertex set of G1 as one cluster. How can this be? Somehow, the expectation that there
would be relatively more k-length paths within the dense regions, in this case triangles,
was unjustified. Now, on the one hand this is a peculiarity of this particular graph and
especially of the subgraphs of the triangle type. For even k, spoilers are pairs like (a, c),
for odd k, these are pairs like (a,d). This clearly has to do with the specific structure
of G1, where the set of paths of odd length leading e.g. from a to b does not profit
from (a, b) being in a triangle, compared with the set of paths leading from a to d. On
the other hand the behaviour of any similarity coefficient Zk,G is in general very much
influenced by the parity of k. There is a strong effect that odd powers of M obtain their
mass from simple paths of odd length and that even powers ofM obtain their mass from
simple paths of even length. The only exceptions are those paths which include loops of
odd length. Note that the only requirement for a loop of even length is the presence of
an edge (inducing a loop of length 2).

5.3.3 A countermeasure to parity dependence. The observation in one of the previous
paragraphs that paths containing circuits of odd length form an exception brings a solu-
tion to the problem of parity dependence. By adding loops to each node in G1, the parity
dependence is removed. Just as every edge induces the minimal loop of even length,
every node now induces the minimal loop of odd length. On the algebra side, adding
loops corresponds with adding the identity matrix to M . The numbers defining the new
coefficients Z2,G1+I are found in Figure 9, where the largest off-diagonal matrix entries
(diagonal entries are disregarded) are printed in boldface. Each coefficient now yields
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6 7 8 9
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Figure 10. Graph G3.



5 2 1 0 2 3 3 0 0 4 0 0
2 4 3 1 3 1 2 1 0 1 0 0
1 3 4 2 3 0 1 2 1 0 1 0
0 1 2 5 2 0 0 4 4 0 4 2
2 3 3 2 5 0 2 2 1 1 1 0
3 1 0 0 0 3 2 0 0 3 0 0
3 2 1 0 2 2 4 1 0 3 0 0
0 1 2 4 2 0 1 5 4 0 4 2
0 0 1 4 1 0 0 4 5 0 5 3
4 1 0 0 1 3 3 0 0 4 0 0
0 0 1 4 1 0 0 4 5 0 5 3
0 0 0 2 0 0 0 2 3 0 3 3


Figure 11. The matrix (N+I)2, N =MG3 .

the best clustering, consisting of the set of four triangles. Adding loops helps in further
differentiating the numbers Zk,G1+I(s, t) for fixed s and varying t.

For a less symmetrical example, consider the simple graph G3 depicted in Figure 10, also
used on page 42. Its associated matrix after adding loops to each node is given next
to it in Figure 11. Below are the results of single link clustering at all levels, using the
similarity coefficient Z2,G3+I .

Level Clustering

∞ . . .6 {singletons(V)} = { {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12} }
5 { {9,11}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {10}, {12} }
4 { {1,10}, {4,8,9,11}, {2}, {3}, {5}, {6}, {7}, {12} }
3 {{1,6,7,10} {2,3,5}, {4,8,9,11,12} }
2,1,0 {V} = {{1,2,3,4,5,6,7,8,9,10,11,12}}

The clustering at level 3, which is the first in which no singletons remain, is rather pleas-
ing. This clustering also results if the coefficient is taken to be Z3,G3+I (not given here).
The coefficient Z4,G3+I starts out accordingly, however, before node 6 gets involved, the
groups {4,8,9,11,12} and {2,3,5} are joined. This is caused by the fact that node 6
is located in the sparsest part of G3. The weak spot of single link clustering, namely
chaining, surfaces here in the specific case of k-path clustering.

The last example in this section is a graph G2 for which single link clustering with coeffi-
cient Zk,G2 , k > 1, initially groups points together which are not connected. The graph G2

in Figure 8 is a small bipartite graph. The upper and lower nodes have three simple
paths of length 2 connecting them. Even in the presence of loops, the number of k-step
paths, k > 1, will always be greater for the pair of top and bottom nodes than for any
other pair. Bipartite graphs form a class of graphs for which it is natural to cluster each
of the two node domains separately2. By adding multiple loops to each node of G2 it can
be ensured that the resulting clustering corresponds with connected components only

2e.g. Document phrase databases naturally yield bipartite graphs. Clustering the two node
domains then yields a document grouping and a phrase grouping.
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(one in this case), but it is difficult to formulate a sufficient condition which guarantees
this property for graphs in general. I conjecture that a sufficient condition is for a graph
to have nonnegative spectrum. This is a non-trivial conjecture, since spectral properties
have to be related to both the ordinal relationship among entries of a matrix power and
the 0/1 structure of the matrix itself.

5.3.4 A critical look at k-path clustering. If k-path clustering were to be applied to
large graphs, it would be desirable to work with varying k and the corresponding co-
efficients Zk,G. However, for most application graphs in this research, the matrices Mk

and (M + I)k fill very rapidly due to high connectivity of the graphs. The potential num-
ber of nonzero elements equals 102N for graphs of vertex-size |V | = 10N . For N = 4 this
quantity is already huge and for N = 5 it is clearly beyond current possibilities. More
importantly, it is quadratically related to N. In large scale applications, this is known to
be a bad thing. It is difficult to remedy this situation by a regime of removing smaller
elements.

A second minus was mentioned in the discussion of the example graph G3 in Figure 10.
I remarked that under the coefficient Z4,G3 groups which had formed already started to
unite before the last node left its singleton state. The coefficients Zk,G do account for the
local structure around a node. However, a region which is denser than another region
with which it connected to a certain extent, will tend to swallow the latter up. This is
the effect of chaining in k-path clustering. A third minus is related to the preceding and
arises in the case of weighted graphs. Differentiation in the weight function will lead
to the same phenomenon of heavy-weight regions swallowing up light-weight regions.
It should be noted that this situation is problematic for every cluster method based on
single link clustering.

On the credit side I find that at least in a number of examples the idea of considering
higher length paths works well. The manoeuvre of adding loops to graphs is clearly ben-
eficial, and the reason for this lies in the fact that parity dependence is removed, leading
to a further differentiation of the associated similarity coefficient. The issue of parity
dependence has been noted before: Alpert and Kahng criticize the (K, L)–connectivity
method of Garbers et al — which is a variant of k-component clustering — for cutting a
four–cycle (which is a bipartite graph) into disjoint paths.

5.4 Random walks and graphs

In this section I briefly discuss probabilistic cluster algorithms proposed in the graph
partitioning community and the concept of random walks on graphs. An application
of the latter is briefly described in Chapter 8, namely polynomial time approximation
schemes based on Markov chains. These are interesting because a necessary condition
is in general that the Markov chains be rapidly mixing, which essentially requires that
the subdominant eigenvalue is well separated from the largest eigenvalue one. This
relationship between the spectrum of a graph and its connectivity properties plays a role
in many applications in graph theory (Chapter 8), and it does so too in the MCL process.
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5.4.1 Probabilistic cluster algorithms. In the graph partitioning community, several
randomized cluster algorithms have been proposed. I follow the survey article [8] by
Alpert and Kahng which was written in 1995. Karger [99] proposed a heuristic where
each vertex starts as a singleton cluster. Edges are iteratively chosen in random fashion,
and each time the clusters incident to the currently chosen edge are contracted into a
single cluster. A related approach was proposed by Bui et al in [29, 159]. A matching in a
graph is a set of edges such that no pair of edges has a common vertex. They propose to
find a random maximal matching and merge each pair of vertices into a cluster, result-
ing in a set of n/2 clusters. Both proposals hinge on the fact that there are more edges
within clusters than in between different clusters if cluster structure is present. Hagen
and Kahng sample random walks for cycles in [75]; the basic setup is that if two nodes
co-occur sufficiently often in a cycle, then they are joined within a cluster. Finally, Yeh
et al [174] propose a method in which shortest paths between randomly chosen pairs of
vertices are computed. Each edge has a cost associated with it, which is adjusted every
time the edge is included in a shortest path. In dense clusters, alternative paths are eas-
ily found; this not being the case for vertices in different clusters, edges between them
will inevitably acquire a higher check.

The basic idea underlying the MCL algorithm fits in the same paradigm, but two impor-
tant distinctions are that random walks are computed deterministically and simultane-
ously. The crux of the algorithm is that it incorporates reinforcement of random walks.

5.4.2 Random walks on graphs. The standard way to define a random walk on a simple
graph is to let a Young Walker take off on some arbitrary vertex. After that, he succes-
sively visits new vertices by selecting arbitrarily one of the outgoing edges.3 This will be
the starting point for the MCL algorithm. An excellent survey on random graphs is [114]
by Lovász. An important observation quoted from this article is the following:

A random walk is a finite Markov chain that is time–reversible (see below). In
fact, there is not much difference between the theory of random walks on graphs
and the theory of finite Markov chains; every Markov chain can be viewed as a
random walk on a directed graph, if we allow weighted edges.

The condition that (the chain generated by) a Markov matrix is time–reversible translates
to the condition that the matrix is diagonally similar to a symmetric matrix (see below).
In order to define random walks on weighted graphs in general, the weight function of
a graph has to be changed such that the sum of the weight of all outgoing edges equals
one. This is achieved by a generic rescaling step, which amounts to the localization of
the weight function alluded to before.

Definition 2. Let G be a graph on n nodes, let M = MG be its associated matrix. The
Markov matrix associated with a graph G is denoted by TG and is formally defined by
letting its qth column be the qth column of M normalized. To this end, let d denote the

3Basic notions investigated in the theory of random walks are the access time Hij , which is
the expected number of steps before node i is visited starting from node j, the cover time, which
is the expected number of steps to reach every node, and the mixing rate, which is a measure of
how fast the random walk converges to its limiting distribution.



48 THE GRAPH CLUSTERING PARADIGM

diagonal matrix that has diagonal entries the column weights of M , thus dkk =
∑
i Mik,

and dij = 0, i ≠ j. Then TG is defined as

TG = MGd−1(2)

The Markov matrix TG corresponds with a graph G′, which is called the associated
Markov graph of G. The directed weight function of G′, which is encoded in the ma-
trix TG, is called the localized interpretation of the weight function of G. �

This definition encodes exactly the transformation step used in the theory of random
walks on graphs. Given an undirected graph G, the matrix N = TG is no longer sym-
metric, but is diagonally similar to a symmetric matrix. Something can be said about the
spectrum of TG in terms of the spectrum ofMG if G is undirected.

Lemma 1. Let G be undirected and void-free4, let M = MG be its associated matrix, let
T = TG be its associated Markov matrix. Then the number of positive, negative, and zero
eigenvalues are the same for T and M .

Next denote by l and u the minimum respectively maximum column sum, that is, l =
mink

∑
i Mik, and u =maxk

∑
i Mik. Then

λk(M)
u

≤ λk(T) ≤ λk(M)l λk(T) > 0(3)

λk(M)
l

≤ λk(T) ≤ λk(M)u
λk(T) < 0(4)

Proof. Let d be the diagonal matrix of column lengths as defined in Definition 2. The
matrix T = Md−1 is similar to the matrix d−1/2Md−1/2, which is congruent to the ma-
trixM . Now the first statement of the lemma follows from Sylvester’s law of inertia ([86],
page 223). Because of congruence, the inertia of the matricesM and d−1/2Md−1/2 are the
same, and because of similarity, the spectra of the matrices d−1/2Md−1/2 and T = Md−1

are the same, which is a stronger property than sharing the same inertia. The fact that
the transition matrix T = d−1 is diagonally similar to the symmetric matrix d−1/2Md−1/2

is in Markov theory phrased as that T is time–reversible or that T satisfies the detailed
balance condition.

The second statement follows from Ostrowski’s theorem ([86], page 224), which relates
the eigenvalues of a hermitian matrix A to the eigenvalues of the matrix SAS∗ in terms
of bounding factors λ1(SS∗) and λn(SS∗). In the lemma, these factors are simply the
largest and smallest eigenvalue of the matrix d−1, equalling respectively 1/l and 1/u. It
should be noted that this result can be refined by looking at principal submatrices of M .
This is useful if there are a few columns of M of small weight compared with the other
columns. This refinement is omitted here since it will not be needed. �

5.4.3 A closer look at random walks. Given a graph G and its associated Markov ma-
trix T = TG, the value Tpq now indicates ‘how much is the vertex q attracted to the
vertex p’, and this is meaningful only in the context of the other values found in the

4All vertices are part of at least one edge.
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qth column. It is still possible to move a node away from all its neighbours by increas-
ing the weight of its loop. In Figure 12 the matrix M = TG3+I (corresponding with the
graph G3 in Figure 10) is given which results after the rescaling procedure, followed by
three successive powers and a matrix labelled M∞. The matrix M is column stochastic.
The fact that for each of its columns all nonzero values are homogeneously distributed
can be interpreted as ‘each node is equally attracted to all of its neighbours’, or ‘at each
node one moves to each of its neighbours with equal probability’.

All powers of M are column stochastic matrices too. For any Markov matrix N, the
powersN(i) have a limit, which is possibly cyclic (i.e. consisting of a sequence of matrices
rather than a single matrix). A connected component C of a graph G, which has the
property that the greatest common divisor of the set of lengths of all circuits in C is 1,
is called regular. If for every vertex in C there is a path in C leading to any other
vertex in C it is called ergodic. If the underlying graph of a Markov matrix N consists
of ergodic regular components only, then the limit of the row N(i) is non-cyclic. The
graph G3 in Figure 10 clearly has this property, and the limit is found in Figure 12,
denoted as M∞. The columns of M∞ each equal the unique eigenvector of M associated
with eigenvalue 1. This eigenvector e denotes the equilibrium state of the Markov process
associated with M . A good review of Markov theory in the larger setting of nonnegative
matrices can be found in [19]. Regrettably, the existing theory on Markov matrices is
of little use in this thesis, because an essential ingredient of the MCL process is the
operator Γr which acts on Markov matrices in a non-linear fashion.

5.5 An example MCL run

Consider Figure 12 again. As is to be expected, the equilibrium state e (each column
of M∞ equals e) spreads its mass rather homogeneously among the states or vertices
of G3. However, the initial iterands Mk, k = 2, . . . , exhibit the same behaviour as did the
matrices (N + I)k in Figure 11, inducing the similarity coefficients Zk,G . Transition val-
ues Mkpq are relatively high if the vertices p and q are located in the same dense region.
There is a correspondence between the numerical distribution of the columnMkp(q), and
the distribution of the edges of G3 over dense regions and sparse boundaries.

5.5.1 Boosting the multiplier effect. The obvious interpretation of the new weight func-
tion is in terms of flow or random walks rather than in terms of path sets, but the
observed behaviour of matrix multiplication is similar. The new interpretation of the
weight function more or less suggests a speculative move. Flow is easier within dense
regions than across sparse boundaries, however, in the long run this effect disappears.
What if the initial effect is deliberately boosted by adjusting the transition probabilities?
A logical model is to transform a Markov matrix T by transforming each of its columns.
For each vertex, the distribution of its preferences (i.e. transition values) will be changed
such that prefered neighbours are further favoured and less popular neighbours are de-
moted. A natural way to achieve this effect is to raise all the entries in a given column
to a certain power greater than one (e.g. squaring), and rescaling the column to have
sum 1 again. This has the advantage that vectors for which the nonzero entries are
nearly homogeneously distributed are not so much changed, and that different column
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0.200 0.250 −− −− −− 0.333 0.250 −− −− 0.250 −− −−
0.200 0.250 0.250 −− 0.200 −− −− −− −− −− −− −−
−− 0.250 0.250 0.200 0.200 −− −− −− −− −− −− −−
−− −− 0.250 0.200 −− −− −− 0.200 0.200 −− 0.200 −−
−− 0.250 0.250 −− 0.200 −− 0.250 0.200 −− −− −− −−

0.200 −− −− −− −− 0.333 −− −− −− 0.250 −− −−
0.200 −− −− −− 0.200 −− 0.250 −− −− 0.250 −− −−
−− −− −− 0.200 0.200 −− −− 0.200 0.200 −− 0.200 −−
−− −− −− 0.200 −− −− −− 0.200 0.200 −− 0.200 0.333

0.200 −− −− −− −− 0.333 0.250 −− −− 0.250 −− −−
−− −− −− 0.200 −− −− −− 0.200 0.200 −− 0.200 0.333
−− −− −− −− −− −− −− −− 0.200 −− 0.200 0.333


M = TG3+I

0.257 0.113 0.063 −− 0.100 0.261 0.175 −− −− 0.258 −− −−
0.090 0.225 0.175 0.050 0.140 0.067 0.100 0.040 −− 0.050 −− −−
0.050 0.175 0.225 0.090 0.140 −− 0.050 0.080 0.040 −− 0.040 −−
−− 0.063 0.113 0.210 0.090 −− −− 0.160 0.160 −− 0.160 0.133

0.100 0.175 0.175 0.090 0.230 −− 0.113 0.080 0.040 0.063 0.040 −−
0.157 0.050 −− −− −− 0.261 0.113 −− −− 0.195 −− −−
0.140 0.100 0.050 −− 0.090 0.150 0.225 0.040 −− 0.175 −− −−
−− 0.050 0.100 0.160 0.080 −− 0.050 0.200 0.160 −− 0.160 0.133
−− −− 0.050 0.160 0.040 −− −− 0.160 0.227 −− 0.227 0.244

0.207 0.050 −− −− 0.050 0.261 0.175 −− −− 0.258 −− −−
−− −− 0.050 0.160 0.040 −− −− 0.160 0.227 −− 0.227 0.244
−− −− −− 0.080 −− −− −− 0.080 0.147 −− 0.147 0.244


M2



0.213 0.133 0.069 0.013 0.090 0.259 0.198 0.020 −− 0.238 −− −−
0.106 0.158 0.148 0.053 0.136 0.069 0.095 0.046 0.018 0.077 0.018 −−
0.055 0.148 0.158 0.095 0.134 0.017 0.060 0.078 0.050 0.025 0.050 0.027
0.013 0.066 0.119 0.161 0.085 −− 0.023 0.156 0.165 −− 0.165 0.151
0.090 0.170 0.168 0.085 0.155 0.054 0.126 0.096 0.050 0.069 0.050 0.027
0.155 0.052 0.013 −− 0.033 0.205 0.116 −− −− 0.182 −− −−
0.158 0.095 0.060 0.018 0.101 0.155 0.158 0.026 0.008 0.173 0.008 −−
0.020 0.058 0.098 0.156 0.096 −− 0.033 0.152 0.163 0.013 0.163 0.151
−− 0.023 0.063 0.165 0.050 −− 0.010 0.163 0.204 −− 0.204 0.233

0.190 0.077 0.025 −− 0.055 0.242 0.173 0.010 −− 0.225 −− −−
−− 0.023 0.063 0.165 0.050 −− 0.010 0.163 0.204 −− 0.204 0.233
−− −− 0.020 0.091 0.016 −− −− 0.091 0.140 −− 0.140 0.179


M3



0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096
0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096
0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096
0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058
0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096
0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096
0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096
0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058


M∞

Figure 12. Powers of M = TG3+I , the Markov matrix associated with the graph G3 in Figure 10,
loops added to G3
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positions with nearly identical values will still be close to each other after rescaling. This
is explained by observing that what effectively happens is that all ratios Tp1q/Tp2q are
raised to the same power. Below four vectors and their image after rescaling with power
coefficient 2 are listed. The notation Γr v is introduced right after these examples.

Vector v:


0
3
0
1
2




0

1/2
0

1/6
1/3




1/4
1/4
1/4
1/4
0




0.151
0.159
0.218
0.225
0.247




0.086
0.000
0.113
0.801
0.000



Image Γ2v:


0

9/14
0

1/14
4/14




0

9/14
0

1/14
4/14




1/4
1/4
1/4
1/4
0




0.110
0.122
0.229
0.245
0.295




0.011
0.000
0.019
0.970
0.000


Definition 3. Given a matrix M ∈ IRk×l, M ≥ 0, and a real nonnegative number r ,
the matrix resulting from rescaling each of the columns of M with power coefficient r is
called ΓrM , and Γr is called the inflation operator with power coefficient r . Formally, the
action of Γr : IRk×l → IRk×l is defined by

(ΓrM)pq = (Mpq)r
/ k∑
i=1

(Miq)r

If the subscript is omitted, it is understood that the power coefficient equals 2. �

There are no restrictions on the matrix dimensions to fit a square matrix, because this
allows Γr to act on both matrices and column vectors. There is no restriction that the
input matrices be stochastic, since it is not strictly necessary, and the extended appli-
cability is sometimes useful. The parameter r is assumed rather than required to be
nonnegative. The reason is that in the setting of the MCL process nonnegative values r
have a sensible interpretation attached to them. Values of r between 0 and 1 increase the
homogeneity of the argument probability vector (matrix), whereas values of r between 1
and ∞ increase the inhomogeneity. In both cases, the ordering of the probabilities is
not disturbed. Negative values of r invert the ordering, which does not seem to be of
apparent use.

Definition 4. A nonnegative vector v is called homogeneous if all its nonzero entries
are equal. A nonnegative matrix is called column–homogeneous if each of its columns is
homogeneous. �

The set of homogeneous probability vectors is precisely the set of vectors which are
invariant under Γr , r ≠ 1. When applied to vectors, the Γr operator has a nice mathe-
matical property in terms of majorization. This is discussed in the following chapter,
Section 6.2. Perhaps surprisingly, the Γr operator maps a rather large class of matrices
with real spectrum onto itself, and if r ∈ IN, the subset of this class with nonnegative
spectrum is preserved as well. These classes are introduced in Chapter 7.
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5.5.2 Iterating expansion and inflation. Figure 13 gives the result of applying Γr to the
Markov matrix M2 given in Figure 12. The vital step now is to iterate the process of
alternately expanding information flow via normal matrix multiplication and contracting
information flow via application of Γr . Thus, the matrix ΓrM2 is squared, and the inflation
operator is applied to the result. This process is repeated ad libitum. The invariant of the
process is that flow in dense regions profits from both the expansion and the inflation
step. A priori it is uncertain whether the process converges, or whether convergence will
lead to a meaningful limit. However, the heuristic which leads to the formulation of the
process suggests that something will happen for graphs possessing sparse boundaries.
The transition values corresponding to edges crossing sparse boundaries are given a
hard time by the process, and if anything, it is to be expected that they will tend to zero.
This is exactly what happens for the example graph. The 5rd iterand, the 9th iterand, and
the invariant limit5 of this process (provisionally denoted byM∞mcl) are given in Figure 13
as well.

The matrix M∞mcl clearly is an idempotent under both matrix multiplication and the in-
flation operator. It has a straightforward interpretation as a clustering. Four nodes can
be said to be an attractor, namely those nodes that have positive return probability. The
nodes 9 and 11 are as much attracted to each other as they are to themselves. The rest of
the vertex set of G3 can be completely partitioned according to the nodes to which they
are attracted. Sweeping attractors and the elements they attract together, the partition
{4,8,9,11,12} {1,6,7,10} {2,3,5} results, also found earlier with k-path clustering.

In the next section the MCL process is formally described, and the relationship between
equilibrium states of the MCL process and clusterings is formalized. A certain subset of
the equilibrium states only admits an interpretation as a clustering with overlap. This is
related to the presence of symmetry in the graphs and matrices used. Consider the ma-
trix M depicted in Figure 14, corresponding with a line–graph on 7 nodes, loops added
to each node. An MCL run with e(i)=c 2, r(i)=c 2 results in the limit T∞mcl. The nodes 2 and 6
are attractors, the node sets {1,3}, and {5,7}, are respectively attracted to them. The ver-
tex 4 is equally attracted to 2 and 6. The formation of two clusters, or different regions
of attraction, is explained by the fact that the nodes at the far ends, i.e. 1,2,6,7 have
higher return probability after the first iterations than the nodes in the middle. Given
the symmetry of the graph, it is only natural that node 4 is equally attracted to both
regions.

5.6 Formal description of the MCL algorithm

The basic design of the MCL algorithm is given in Figure 15; it is extremely simple and
provides basically an interface to the MCL process, introduced below. The main skele-
ton is formed by the alternation of matrix multiplication and inflation in a for loop. In
the kth iteration of this loop two matrices labelled T2k and T2k+1 are computed. The ma-
trix T2k is computed as the previous matrix T2k−1 taken to the power ek. The matrix T2k+1

is computed as the image of T2k under Γrk . The row6 of expansion powers e(i) and the

5Idempotent under both Exp2 and Γ2.
6The notation e(i) is shorthand for {ei}i∈IN and likewise r(i) for {ri}i∈IN .
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0.380 0.087 0.027 −− 0.077 0.295 0.201 −− −− 0.320 −− −−
0.047 0.347 0.210 0.017 0.150 0.019 0.066 0.012 −− 0.012 −− −−
0.014 0.210 0.347 0.056 0.150 −− 0.016 0.046 0.009 −− 0.009 −−
−− 0.027 0.087 0.302 0.062 −− −− 0.184 0.143 −− 0.143 0.083

0.058 0.210 0.210 0.056 0.406 −− 0.083 0.046 0.009 0.019 0.009 −−
0.142 0.017 −− −− −− 0.295 0.083 −− −− 0.184 −− −−
0.113 0.069 0.017 −− 0.062 0.097 0.333 0.012 −− 0.147 −− −−
−− 0.017 0.069 0.175 0.049 −− 0.016 0.287 0.143 −− 0.143 0.083
−− −− 0.017 0.175 0.012 −− −− 0.184 0.288 −− 0.288 0.278

0.246 0.017 −− −− 0.019 0.295 0.201 −− −− 0.320 −− −−
−− −− 0.017 0.175 0.012 −− −− 0.184 0.288 −− 0.288 0.278
−− −− −− 0.044 −− −− −− 0.046 0.120 −− 0.120 0.278


Γ2M2, M defined in Figure 12

0.448 0.080 0.023 −− 0.068 0.426 0.359 −− −− 0.432 −− −−
0.018 0.285 0.228 0.007 0.176 0.006 0.033 0.005 −− 0.007 −− −−
0.005 0.223 0.290 0.022 0.173 −− 0.010 0.017 0.003 0.001 0.003 0.001
−− 0.018 0.059 0.222 0.040 −− 0.001 0.187 0.139 −− 0.139 0.099

0.027 0.312 0.314 0.028 0.439 0.005 0.054 0.022 0.003 0.010 0.003 0.001
0.116 0.007 0.001 −− 0.004 0.157 0.085 −− −− 0.131 −− −−
0.096 0.040 0.013 −− 0.037 0.083 0.197 0.001 −− 0.104 −− −−
−− 0.012 0.042 0.172 0.029 −− 0.002 0.198 0.133 −− 0.133 0.096
−− 0.001 0.015 0.256 0.009 −− −− 0.266 0.326 −− 0.326 0.346

0.290 0.021 0.002 −− 0.017 0.323 0.260 −− −− 0.316 −− −−
−− 0.001 0.015 0.256 0.009 −− −− 0.266 0.326 −− 0.326 0.346
−− −− 0.001 0.037 0.001 −− −− 0.039 0.069 −− 0.069 0.112


Γ2(Γ2M2 · Γ2M2)

0.807 0.040 0.015 −− 0.034 0.807 0.807 −− −− 0.807 −− −−
−− 0.090 0.092 −− 0.088 −− −− −− −− −− −− −−
−− 0.085 0.088 −− 0.084 −− −− −− −− −− −− −−
−− 0.001 0.001 0.032 0.001 −− −− 0.032 0.031 −− 0.031 0.031
−− 0.777 0.798 −− 0.786 −− 0.001 −− −− −− −− −−

0.005 −− −− −− −− 0.005 0.005 −− −− 0.005 −− −−
0.003 0.001 −− −− 0.001 0.003 0.003 −− −− 0.003 −− −−
−− −− 0.001 0.024 −− −− −− 0.024 0.024 −− 0.024 0.024
−− −− 0.002 0.472 0.001 −− −− 0.472 0.472 −− 0.472 0.472

0.185 0.005 0.001 −− 0.004 0.185 0.184 −− −− 0.185 −− −−
−− −− 0.002 0.472 0.001 −− −− 0.472 0.472 −− 0.472 0.472
−− −− −− 0.001 −− −− −− 0.001 0.001 −− 0.001 −−


(Γ2 ◦ Squaring) iterated four times on M

1.000 −− −− −− −− 1.000 1.000 −− −− 1.000 −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− 1.000 1.000 −− 1.000 −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− 0.500 −− −− −− 0.500 0.500 −− 0.500 0.500
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− 0.500 −− −− −− 0.500 0.500 −− 0.500 0.500
−− −− −− −− −− −− −− −− −− −− −− −−


M∞mcl

Figure 13. Iteration of (Γ2 ◦ Squaring) with initial iterand M defined in Figure 12.

Entries marked ‘−−’ are either zero because that is the exact value they assume (this is
true for the first two matrices) or because the computed value fell below the machine
precision.
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0.5000 0.3333 −− −− −− −− −−
0.5000 0.3333 0.3333 −− −− −− −−
−− 0.3333 0.3333 0.3333 −− −− −−
−− −− 0.3333 0.3333 0.3333 −− −−
−− −− −− 0.3333 0.3333 0.3333 −−
−− −− −− −− 0.3333 0.3333 0.5000
−− −− −− −− −− 0.3333 0.5000


Initial iterand T1 =M



0.3221 0.2393 0.0493 0.0028 0.0000 −− −−
0.6138 0.6120 0.2664 0.0420 0.0021 0.0000 −−
0.0606 0.1275 0.4259 0.2165 0.0383 0.0010 0.0000
0.0035 0.0200 0.2159 0.4662 0.2143 0.0200 0.0034
0.0000 0.0011 0.0403 0.2259 0.4311 0.1282 0.0607
−− 0.0000 0.0022 0.0436 0.2652 0.6116 0.6137
−− −− 0.0000 0.0029 0.0490 0.2392 0.3220


Intermediate iterand T5 (k equals 2)



0.0284 0.0280 0.0191 0.0015 0.0000 0.0000 0.0000
0.9647 0.9631 0.8226 0.1205 0.0016 0.0000 0.0000
0.0066 0.0082 0.0768 0.1362 0.0087 0.0000 0.0000
0.0003 0.0006 0.0686 0.4309 0.0673 0.0006 0.0003
0.0000 0.0000 0.0109 0.1677 0.0863 0.0088 0.0069
0.0000 0.0000 0.0020 0.1414 0.8173 0.9627 0.9644
0.0000 0.0000 0.0000 0.0018 0.0187 0.0280 0.0284


Intermediate iterand T9 (k equals 4)



−− −− −− −− −− −− −−
1.0000 1.0000 1.0000 0.5000 −− −− −−
−− −− −− −− −− −− −−
−− −− −− −− −− −− −−
−− −− −− −− −− −− −−
−− −− −− 0.5000 1.0000 1.0000 1.0000
−− −− −− −− −− −− −−


Limit T∞mcl (idempotent under Exp2 and Γ2).

Figure 14. MCL run on a line–graph on 7 nodes

row of inflation powers r(i) influence the granularity of the resulting partition. The ma-
trices in Figure 13 correspond with an MCL session in which e(i)=c 2 and r(i)=c 2. If the
current iterand is sufficiently close to an idempotent matrix the process stops and the
last resultant is interpreted according to Definition 8 and Theorem 1 in the next chapter.
The theorem provides a mapping from the set of nonnegative column allowable idempo-
tent matrices to the set of overlapping clusterings. There are exceptional cases in which
the iterands cycle around a periodic limit. These cases, and the issues of convergence
and equilibrium states at large, are discussed in the following chapter. It is useful to
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# G is a voidfree graph.
# ei ∈ IN, ei > 1, i = 1, . . . .

MCL (G,∆, e(i), r(i)) f # ri ∈ IR, ri > 0, i = 1, . . . .

G = G+∆; # Possibly add (weighted) loops.
T1 = TG; # Create associated Markov graph

# according to Definition 2.
for k = 1, . . . ,∞) f

T2k = Expek(T2k−1);
T2k+1 = Γrk(T2k);

if (T2k+1 is (near–) idempotent) break;
g

Interpret T2k+1) as clustering according to Definition 8;
g

Figure 15. The basic MCL algorithm. Convergence is discussed in Chapter 6.

speak about the algebraic process which is computed by the MCL algorithm in its own
right. To this end, the notion of an MCL process is defined.

Definition 5. A nonnegative column–homogeneous matrixM which is idempotent under
matrix multiplication is called doubly idempotent. �

Definition 6. A general MCL process is determined by two rows of exponents e(i), r(i),
where ei ∈ IN, ei > 1, and ri ∈ IR, ri > 0, and is written

( · , e(i), r(i))(5)

An MCL process for stochastic matrices of fixed dimension d× d is written

( ·d×d , e(i), r(i))(6)

An MCL process with input matrix M , where M is a stochastic matrix, is determined by
two rows e(i), r(i) as above, and by M . It is written

(M, e(i), r(i))(7)

Associated with an MCL process (M, e(i), r(i)) is an infinite row of matrices T(i) where
T1 =M , T2i = Expei (T2i−1), and T2i+1 = Γri (T2i), i = 1, . . . ,∞. �

In practice, the algorithm iterands converge nearly always to a doubly idempotent ma-
trix. In the next section it is shown that the MCL process converges quadratically in the
neighbourhood of doubly idempotent matrices. A sufficient property for associating a
(possibly overlapping) clustering with a nonnegative column allowable matrix is that the
matrix is idempotent under matrix multiplication. In Chapter 7 it is shown that the map-
ping of idempotent matrices onto overlapping clusterings according to Definition 8 can
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be generalized towards a mapping of time–reversible Markov matrices with nonnegative
spectrum onto directed acyclic graphs. This is not a generalization in the strict sense,
because stochastic idempotent matrices are in general not time–reversible. However,
in Chapter 7 it is shown that the MCL process offers a perspective in which idempo-
tent matrices are the extreme points of the set of time–reversible Markov matrices with
nonnegative spectrum. The figure below shows the clustering resulting from applying
the MCL algorithm with standard parameters e(i)=c 2 and r(i)=c 2 to the example graph in
Figure 5 taken from [121], loops added to the graph.

Figure 16. MCL Clustering of the graph in Figure 5.



6

Basic MCL theory

This chapter is concerned with basic properties of the MCL process. The first section
gives a generic mapping from nonnegative idempotent column allowable matrices onto
overlapping clusterings. In Section 6.2 simple properties of the Γ operator are derived.
The next two sections deal with equilibrium states which may possibly arise as limits in
an MCL process. The chapter concludes with a section on convergence towards equilib-
rium states and the stability of the MCL process around them.

6.1 Mapping nonnegative idempotent matrices onto clusterings

The following theorem characterizes the structural properties of nonnegative column
allowable idempotent matrices. Using this theorem, Definition 8 establishes a map-
ping from the class of nonnegative column allowable idempotent matrices to the set of
overlapping clusterings. Nonnegative doubly idempotent matrices do not have stronger
structural properties than matrices which are idempotent under matrix multiplication
only. The theorem can easily be derived from the decomposition of nonnegative idem-
potent (not necessarily column allowable) matrices given in [19]. However, I choose to
give a self-contained proof here, which is inspired more by graph–theoretical consider-
ations. The proof of the theorem is easier to follow by first looking at the large matrix
on page 59, and realizing that any nonnegative column allowable idempotent matrix
must essentially have a similar 0/1 structure (the matrix is also stochastic and column
homogeneous, which is not essential for the theorem below).

Theorem 1. LetM be a nonnegative column allowable idempotent matrix of dimensionN,
let G be its associated graph. For s, t, nodes in G, write s → t if there is an arc in G from s
to t. By definition, s → t ⇐⇒ Mts ≠ 0. Let α,β, γ be nodes in G. The following implications
hold.

(α → β)∧ (β→ γ) =⇒ α→ γ(8)

(α→ α)∧ (α→ β) =⇒ β→ α(9)

α→ β =⇒ β→ β(10)

Proof. The first statement follows from the fact that Mγα = (M2)γα ≥ MγβMβα > 0.
Suppose the second statement does not hold, then there exist α and β with α → α,
α → β, and β 6→ α. Denote by Vα the set of nodes which reach α, denote by Vβ the set
of nodes reachable from β. Then Vα ≠ ∅ because α → α, and Vβ ≠ ∅ because M is
column allowable. It is furthermore true that Vα ∩ Vβ = ∅ and that there is no arc going
from Vβ to Vα, for this would imply β → α and β → β by 8. For u,w ∈ Vα,v ∈ V , the

57
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property u → v → w implies v ∈ Vα. For u,w ∈ Vβ, v ∈ V , the property u → v → w
implies v ∈ Vβ. It follows that for all 2-step paths between node pairs respectively
lying in Vα and Vβ only indices lying in the same node set Vα, respectively Vβ, need be
considered. Reorder M and partition the matrix such that its upper left block has the
form (

A11 A12

A21 A22

)

where the indices of the diagonal block A11 correspond with all the elements in Vα, and
the indices of the diagonal block A22 correspond with all the elements in Vβ. It follows
from the construction of Vα and Vβ that all entries of A21 are positive, since for all u ∈
Vα,v ∈ Vβ, it is true that u → α → β → v . Similarly, A12 = 0. The observation made
on 2-step paths with beginning and ending in Vα, respectively Vβ, implies that A11 = A11

2

and A22 = A22
2. Furthermore, the inequality A21 ≥ A21A11 + A22A21 holds. Multiplying

both sides on the left with A22 and on the right with A11, the inequality A22A21A11 ≥
2A22A21A11 results. The fact that A21 is positive, and the fact that A11 contains one
positive row, i.e. the row corresponding with α, imply that A21A11 is positive too. Since
A22 is nonzero, this implies that the product A22A21A11 is nonnegative and nonzero,
leading to a contradiction. The third statement follows by observing that there must be
a path of infinite length going from α to β in G, that is, a path containing a circuit. If this
were not the case, there would exist a k ∈ IN such that (Mk)βα = 0, whereas Mβα ≠ 0.
The existence of such a circuit implies by 9 and 10 that β→ β. �

Definition 7. Let G = (V,w) be the associated graph of a nonnegative voidfree idempo-
tent matrix of dimension N, where V = {1, . . . , N}. The node α ∈ V is called an attractor
ifMαα ≠ 0. If α is an attractor then the set of its neighbours is called an attractor system.

�

In the following a formal relationship is established between nonnegative idempotent
matrices and overlapping clusterings. In order to sustain insight, it may again be helpful
to keep the matrix on page 59 in mind. By Theorem 1, each attractor system in G induces
a weighted subgraph in G which is complete. Theorem 1 furthermore provides the means
to formally associate an overlapping clustering with each nonnegative column allowable
idempotent matrix. Let M be an arbitrary nonnegative idempotent matrix, let G = (V,w)
be its associated graph. Denote by Vx the set of attractors of G. Denote the ‘arc from ·
to ·’ relationship in G by (· → ·). The first two statements in Theorem 1 imply that →
is transitive and symmetric on Vx , and → is reflexive on Vx by definition of Vx . Ac-
cordingly, → induces equivalence classes on Vx . Denote the set of equivalence classes
by {E1, . . . , Ed}. The definition below requires the input of a column allowable matrix, in
order to be able to distribute the elements of V\Vx over the classes Ei.

Definition 8. Let M be a nonnegative column allowable idempotent matrix. Let G =
(V,w) be its associated graph, let → be the arc relation associated with G. Let Vx be the
set of attractors in G, let E = {E1, . . . , Ed} be the set of equivalence classes of → on Vx .
Define a relation ν on E × V by setting ν(E,α) = 1 if ∃β ∈ E with α → β, and ν(E,α) = 0
otherwise. The overlapping clustering CLM = {C1, . . . , Cd} associated with M , defined
on V , has d elements. The ith cluster Ci, i = 1, . . . , d is defined by Equation (11).

Ci =
{
v ∈ V | ν(Ei, v) = 1

}
(11)

�
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Note that the set of clusters is precisely the set of weakly connected components1 in
the directed graph G. The inclusion Ei ⊂ Ci implies that each cluster has at least one
element which is unique for this cluster. All this is in line with the procedures followed
while studying the example in the previous chapter. It should be noted that there is in
general a very large number of nonnegative column allowable idempotent matrices which
yield the same overlapping clustering according to Definition 8. This is caused by the fact
that the number of attractors and the distribution of the attractors over the clusters may
both vary without resulting in different clusterings. For example, printing attractors in
boldface, the clustering {{1,2}, {3,4,5}} results from all 21 possible combinations of the
distributions {1,2}, {1,2}, and {1,2} for the first cluster, and the distributions {3,4,5},
{3,4,5}, {3,4,5}, {3,4,5}, {3,4,5}, {3,4,5}, and {3,4,5} for the second cluster. Another
example shows the extent to which complicated structure can be present in nonnegative
idempotent matrices. The matrix



1/3 1/3 1/3 0 0 0 0 0 0 0 1/3 1/6 0 0 1/5
1/3 1/3 1/3 0 0 0 0 0 0 0 1/3 1/6 0 0 1/5
1/3 1/3 1/3 0 0 0 0 0 0 0 1/3 1/6 0 0 1/5
0 0 0 1/4 1/4 1/4 1/4 0 0 0 0 0 1/7 0 0
0 0 0 1/4 1/4 1/4 1/4 0 0 0 0 0 1/7 0 0
0 0 0 1/4 1/4 1/4 1/4 0 0 0 0 0 1/7 0 0
0 0 0 1/4 1/4 1/4 1/4 0 0 0 0 0 1/7 0 0
0 0 0 0 0 0 0 1/2 1/2 0 0 1/6 1/7 1/2 1/5
0 0 0 0 0 0 0 1/2 1/2 0 0 1/6 1/7 1/2 1/5
0 0 0 0 0 0 0 0 0 1 0 1/6 1/7 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



is nonnegative idempotent and gives rise to the set Vx = {1,2,3,4,5,6,7,8,9,10}, to the
equivalence classes {1,2,3}, {4,5,6,7}, {8,9}, {10}, and to the overlapping clustering
{1,2,3 11,12,15}, {4,5,6,7,13}, {8,9,12,13,14,15}, {10,12,13}. This matrix is also
doubly idempotent and column stochastic. The MCL process converges for nearly all
input graphs to a doubly idempotent column stochastic limit2. For fixed dimension t,
the class of doubly idempotent column stochastic matrices is finite, but extremely large.
The fact that it is finite is easy to see: There is only a finite number of values that each
matrix entry can assume, namely the set of rationals {0,1,1/2, . . . ,1/t}.

The results in this section, especially Definition 8, which uses Theorem 1, establish a
clear relationship between nonnegative column allowable idempotent matrices and over-
lapping clusterings. In practice, the equivalence classes E1, . . . , Ed (see Definition 8) tend

1For the definition of weakly connected components see page 34.
2This is suggested by practical evidence. It is conjectured in Chapter 7 that the MCL process

converges almost always if the input graph is symmetric.
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to be singleton sets, and overlap in the setting of undirected graphs has been observed
only for graphs having certain symmetries. This is discussed in Chapter 10.

6.2 Mathematical properties of the inflation operator

The Γ operator establishes a majorization relationship between a probability vector and
its image. This is stated in Lemma 2. Concerning just Γ this is a nice property, however,
it does not give enough foothold by itself for describing the intricate interaction of the
Γ operator with the Exp operator. The Γ operator furthermore distributes over the Kro-
necker product of matrices, which is stated in Lemma 4. Combined with the distributivity
of normal matrix multiplication over the Kronecker product, this yields the result that
for each MCL process the Kronecker product of the respective iterands corresponding
with two input matrices A and B, is equal to the iterands corresponding with the input
matrix which is the Kronecker product of A and B. This property is used in Section 6.3
to show the existence of certain periodic limits of the MCL process.

Following [118], if z denotes a real vector of length n, then z[1] ≥ z[2] ≥ · · · ≥ z[n]
denote the entries of z in decreasing order.

Definition 9. Let x,y be real nonnegative vectors of length n. The vector y is said to
majorize the vector x if (12) and (13) hold. This is denoted by x ≺ y .

x[1] + · · · + x[k] ≤ y[1] + · · · +y[k] k = 1, . . . , n− 1(12)

x[1] + · · · + x[n] = y[1] + · · · +y[n](13)

�

The relationship ≺ entails a rather precise mathematical notion of one vector x being
more homogeneous than another vector y . It induces a partial order on each set of
nonnegative vectors of fixed dimension. It turns out that the inflation operator Γr makes
probability vectors less homogeneous for values r > 1, and makes probability vectors
more homogeneous for values r < 1, which is stated in Lemma 2. This lemma follows
from the fact that the vectors π and Γrπ satisfy the stronger condition of majorization
by ratio (Lemma 3, also found in [118]).

Lemma 2. Let π be a probability vector, let r be a real number, r > 0. The two inequali-
ties (14) and (15) are implied by the fact that π and Γrπ satisfy the conditions of Lemma 3.
The two equalities (16) and (17) are obvious.

π ≺ Γrπ r > 1(14)

π � Γrπ r < 1(15)

π = Γrπ r = 1(16)

π = Γrπ π is homogeneous(17)

Definition 10. Let x,y be real positive vectors of length n. The vector y is said to
majorize by ratio the vector x, which is written x /y , if

∑
xi =

∑
yi and

x[1]/y[1] ≤ x[2]/y[2] ≤ · · · ≤ x[n]/y[n](18)

�
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Lemma 3. ( [118], page 179) Majorization by ratio implies (normal) majorization.

Proof. Without loss of generality, assume that y[i] = yi and x[i] = xi. The claim is that
for k = 1, . . . , n−1,

k∑
j=1

yj ≥
k∑
j=1

xj

This follows from

k∑
j=1

yj
n∑
l=1

xl −
k∑
j=1

xj
n∑
l=1

yl =
k∑
j=1

yj
n∑

l=k+1

xl −
k∑
j=1

xj
n∑

l=k+1

yl

=
k∑
j=1

n∑
l=k+1

yjyl(
xl
yl
− xj
yj
) ≥ 0

�

The behaviour of Γr (π) as r goes to infinity (where π is a stochastic vector of dimen-
sion n), is easily described. One has that limr→∞ Γr (π)=(σ1, . . . , σn), where σi=0 if
πi < maxi πi and σi=1/m if πi=maxi πi, where m is the number of indices i such that
πi=maxi. Also, Γ0(π)=(τ1, . . . , τn), where τi=0 if πi=0 and τi=1/k if πi ≠ 0, where k is
the number of nonzero entries of π . The orbit of Γr (π) under r (0 ≤ r ≤ ∞), where π is
a stochastic vector, has the property that Γs(π)/ Γt(π) whenever s < t, and satisfies the
multiplicative property ΓsΓt(π)=Γst(π). So the Γr operator is fairly well understood, and
there are many results concerning the majorization relationship between vectors. One
such result is the characterization of so called Schur–convex functions φ (which have
the property that x ≺ y implies φ(x) ≤ φ(y)) in terms of properties of their partial
derivatives. In Chapter 9 a particular Schur–convex function is one of the main ingredi-
ents of a performance criterion for graph clustering (page 104 ff.). A celebrated result in
the theory of majorization is that x ≺ y iff there is a doubly stochastic matrix D such
that x = Dy [117].

Unfortunately, results from the theory of majorization of vectors do not carry over to
matrices in such a straightforward way (i.e. the columns of one matrix majorizing the
columns of another matrix). In [117] this issue is discussed at length. However, Lemma 2
clearly shows the inflationary or ‘decontracting’ effect of Γr , r > 1, as opposed to the
contracting effect of matrix multiplication of nonnegative matrices in terms of the so
called Hilbert distance between positive vectors (see Section 7.4). Moreover, the inflation
operator preserves the majorization by ratio relationship between vectors. For certain
perturbations of circulant limits of the MCL process introduced in Section 6.4, matrix
multiplication preserves the normal majorization relationship. Both cases (Hilbert dis-
tance, majorization) exemplify the phenomenon that the workings of the expansion and
inflation operator can be compared and contrasted in special cases. Annoyingly however,
inflation does not necessarily preserve normal majorization, and expansion of circulants
does not necessarily preserve majorization by ratio. A similar gap exists for the Hilbert
distance.
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Lemma 4. Let A,B be nonnegative matrices of respective dimensions s1 × t1 and s2 × t2,
let r ∈ IR be positive. Denote the Kronecker product by (· ⊗ ·). Equation (19) holds.

Γr (A⊗ B) = ΓrA⊗ Γr B(19)

Proof. Use the following notation for the Kronecker product of matrices. Let (A ⊗
B)i,j,k,l denote the entry (A ⊗ B)is2+k,jt2+l, which is by definition equal to AijBkl. Here
i = 1, . . . , s1, k = 1, . . . , s2, j = 1, . . . , t1, and l = 1, . . . , t2. I prove Identity (19) by
proving that the ratios between two entries in the same column is the same on both
sides of Equation (19). Let i, j, k, l be as above and let i′, k′ be additional indices within
the same bounds as respectively i and k. The indices j, l, identify the (jt1 + l)th column
on both sides of (19). The two index pairs (i, k) and (i′, k′) identify two row entries in
this column.

(
Γr (A⊗ B)

)
i j k l(

Γr (A⊗ B)
)
i′j k′l

=
(A⊗ B)i j k l
(A⊗ B)i′j k′l

r =
Ai j Bk l
Ai′j Bk′l

r

=
(
Aij
Ai′j

)r ( Bkl
Bk′l

)r
=

(
ΓrA

)
i j(

ΓrA
)
i′j

(
Γr B

)
kl(

Γr B
)
k′l

=

(
ΓrA⊗ Γr B

)
i j k l(

ΓrA⊗ Γr B
)
i′jk′l

�

Lemma 5. Let A,B, be square column stochastic matrices with no further restrictions im-
posed on their respective dimensions. Let K = A⊗ B be their Kronecker product. Suppose
all three are input to the same MCL process (·, e(i), r(i)). Denote the respective iterand
pairs by (A2i, A2i+1), (B2i, B2i+1), (K2i, K2i+1), i = 1, . . . ,∞. Identity (20) holds.

Kj = Aj ⊗ Bj j = 1, . . . ,∞(20)

Proof. The lemma follows from the observation that both matrix multiplication and Γ
distribute over the Kronecker product. �

6.3 Equilibrium states of the MCL process

In order to characterize the equilibrium states of the MCL process, I make two extra
assumptions on the input rows r(i) and e(i). These are

i) ri = c eventually, c ∈ IR, c > 1.
ii) ei = 2 eventually.
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The main purpose of these requirements is to study for specific parameters whether
matrices exist corresponding with periodic limits. This question will be answered affir-
matively below. The first requirement implies that the process differs genuinely from the
usual Markov process. It is necessary to require ri > 1 eventually in order to ensure that
the limit of the corresponding MCL process can in principle have structural properties
which are different from the original input graph in terms of the number and distribu-
tion of the weakly connected components. Consider a regular ergodic input graph (all
example graphs in the figures except graph G2 in Figure 8 are regular and ergodic). The
structural properties of all intermediate iterands (with respect to reachability) are iden-
tical, and positive entries can thus only tend to zero eventually, they can not become
equal to zero eventually. It is true only for the limit of the process that it may differ
structurally from the input graph.

The implementation with which experiments were carried out so far uses rows r(i)
and e(i) which have even much simpler structure. The row e(i) assumes the constant 2
everywhere. The row r(i) is allowed to have a prefix of length N, in which it assumes one
constant, and it may assume another constant on the postfix of infinite length starting
at position N + 1. The examples in Chapter 10 use such input rows.

An equilibrium state corresponds with an MCL process (M, e(i), r(i)) with e(i)=c 2,
and r(i)=c c > 1, for which the associated row of matrix pairs (T(2i), T(2i+1)) is peri-
odic. A periodic row of objects is a row consisting of a finite list of objects repeated
infinitely many times. The period of a periodic row is the minimum cardinality of such a
finite list, the period of a constant row is 1. An equilibrium state can be associated with
the input matrix M , with the infinite row (T(2i), T(2i+1)) generated by M , and with a finite
list of matrices constituting a cycle of period p in (T(2i), T(2i+1)). A priori, I distinguish
three different types Li (i = 1, . . . ,3) of equilibrium states for the MCL process with col-
umn stochastic input matrix M , input row r(i)=c c > 1, and input row e(i)=c 2. A matrix M
is said to be of type Li if its associated output row is of type Li. In order of decreasing
strength of properties, the types Li are:

L1 M is doubly idempotent, implying that all matrices T2i and T2i+1 are equal.
L2 The row of pairs (T2(i), T2(i)+1) has period 1. Even iterands are (Exp2 ◦ Γc)–id, odd

iterands are (Γc ◦ Exp2)–id, and T2i ≠ T2i+1.
L3 The row of pairs (T2(i), T2(i)+1) has period p > 1, that is, T2i = T2(i+p) and

T2i+1 = T2(i+p)+1. The even iterands T2i are idempotents under p iterations of
the operator (Exp2 ◦ Γc), the odd iterands T2i+1 are idempotents under p itera-
tions of the operator (Γc ◦ Exp2).

L3a As above, where the matrix T1 is the Kronecker product of a column homoge-
neous column stochastic cyclic matrix P with odd period and a matrix A which is
of type L2 or L1. An example of such P is a permutation matrix containing cycles
of odd period only.

Each of the classes L1, L2, and L3 is non-empty. The most important class of equilibrium
states is the large class L1 of doubly idempotent matrices. These matrices are invariant
under arbitrary MCL processes. For dimensions 2,3,4,5 a few matrices of L2 type for
c = 2 can be found quickly by algebraic computation. They are depicted on page 66.
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The general graph templates on n nodes, n = 2, . . . ,5, which were used to derive these
examples, are invariant under the automorphism group of the ring-graph3 of order n.
Note that the matrix R4b is the Kronecker product of the matrices 1/2J2 and R2a, where
J2 is the all-one matrix of dimension 2. Higher dimensional versions of the templates in
Figure 17 have solutions as well (Lemma 6).

The only clusterings suiting ring graphs are the two extreme clusterings. Slight perturba-
tions of either the MCL process parameters or the input graphs lead the MCL algorithm
to converge towards a limit of the L1 type, corresponding with one of the two extreme
clusterings. For example, setting p = 101/601 in the 3-dimensional matrix template in
Figure 17 leads the algorithm to convergence to the identity matrix, setting p = 99/601
leads the algorithm to converge to 1/3 J, where J is the all-one matrix. The same be-
haviour results after respectively setting c = 201/100 and c = 199/100. For the latter
settings, it is in line with heuristic considerations that a slight increase in inflation leads
the algorithm to converge towards a matrix corresponding with the bottom extreme par-
tition (i.e. {singletonsV}), and that a slight decrease in inflation leads the algorithm to
converge to a matrix corresponding with the top extreme partition (i.e. {V}).

The class L2 consists of equilibrium states which are very instable by nature. The image
of the column vectors under either Γ2 or Exp2 is very different from the original vector.
For this class, expansion and inflation act as each others inverse. A slight perturbation
of the MCL process parameters or the equilibrium state leads to one of the two getting
the upper hand. This is formally proved for a subclass of the class L2 in Lemma 6.

So far, all limits resulting from inputting undirected graphs were of the L1 type. If the
condition e(i)=c 2 is relaxed to e(i)=c k, where k ∈ IN is a constant, examples of the L3a
type can be found as well by selecting bipartite graphs, setting e(i)=c 3, and refraining
from adding loops. This is not surprising, since in bipartite graphs paths of odd length
always go from one of the two node sets to the other. As was the case with ring-graphs,
the relationship between parameter choice, expected behaviour, and observed behaviour
fully agree, so this is an agreeable situation.

The class L3 is nonempty for rows e(i)=c 2 as well. It is easy to construct matrices of the
L3a type, by taking the Kronecker product of L1– or L2–type matrices and permutation
matrices containing odd permutations only, illustrating the use of Lemma 4. Denote by
Lx\Ly the class of matrices satisfying the Lx constraints but not satisfying the Ly con-
straints. It is an open question whether matrices of the type L3\L3a exist. If they exist,
I expect them in any case to be as sensitive to perturbations of parameter settings and
matrix values as are the matrices of the L2 type. While the L3 and L2 classes are of inter-
est for studying the MCL process, they do not form a weak spot of the MCL algorithm. If
a graph constructed from some application such as a thesaurus or a database leads to an
MCL process which at any stage approaches an L2 or L3 type matrix, then the application
graph is in all likelihood a curiosity lacking cluster structure anyhow. Moreover, limits
of L3 type have non-real spectrum, and cannot occur if the input graph is symmetric.
This follows from the results in Chapter 7.

3See Definition 25 on page 116 for the precise definition of a ring graph.
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6.4 Flip–flop equilibrium states

There is a class of matrices which is known not to lead to convergence. In small di-
mensions, it is easy to find matrices M such that Γ2M = M1/2, representing a flip–flop
equilibrium state. Several of these are depicted in Figure 17, each having the form of a
symmetric circulant matrix. The three-dimensional specimen is notable for its simple (ra-
tional) form. The Kronecker product K of such a matrix with any other stochastic matrix
has the property that the MCL process (K, e(i) = 2, r(i) = 2) does not converge towards
a doubly idempotent matrix. However, such flip–flop equilibrium states are sensitive to
perturbations. This can be proven for a subclass of them.

There exists an infinite family of ‘basic’ (indecomposable in terms of the Kronecker prod-
uct) flip–flop positive semi-definite equilibrium states of the form aIn+ (1−a)/nJn. For
these states it is relatively easy to prove that they are instable with respect to alternation
of Exp2 and Γ2.

Lemma 6. Let n > 1. Define αn by

αn =
3
√vn

6(n− 1)
− 2(3n− 4)

3(n− 1) 3
√
vn
− 1

3(n− 1)
(21)

vn = 108n2 − 180n+ 64+ 12(n− 1)
√

3n(27n− 32)(22)

Then the n-dimensional matrix An = αnIn+(1−αn)/nJn has the property that Γ2(An2) =
An. In the class of matrices {aIn + (1 − a)/nJn|a ∈ [0,1]}, there is no trajectory to the
equilibrium (flip–flop) state An for the MCL process with parameters ei and ri constant
equal to 2, thus these states are instable for this process.

Proof. This is derived by computing the square of A = aIn + (1−a)/nJn, which equals
B = a2In+ (1−a2)/nJn, and subsequently solving for (B11/B12)2 = A11/A12. This yields
the equation a(1 − a)(a3(n − 1) + a2 + a − 1) = 0. The solutions a = 0 and a = 1
yield the double idempotents In and Jn; the term of degree three yields the solution as
stated in the lemma. It is straightforward to prove that this term has only one solution
in the interval (0,1) (and in fact, only one real solution). It follows that for a > αn the
MCL process (aIn+(1−a)/nJn, e(i) = 2, r(i) = 2) converges towards In, and that for a <
αn the process converges towards Jn, as is to be expected. The cases where n = 2,3,4,5
are depicted in Figure 17. �

In general, one might hope that the analysis of the stability of flip–flop states which
correspond with symmetric circulants is easier, even if no explicit representation is
known. However, it is difficult to describe expansion and inflation in the same frame-
work. Suppose that a is a positive vector such that the circulant Ca is a flip–flop state, i.e.
Γ2(Ca2) = Ca. Let e be a vector the elements of which sum to zero such that a+e is a non-
negative vector satisfying a+e ≺ a, let f be likewise a vector such that a+f /a. Extend
the definition of ≺ (/) to circulants by setting Cx ≺ Cy iff x ≺ (/)y . Now it is easy to
prove that Cx ≺ Cy =⇒ Cx2 ≺ Cy2, and that Cx /Cy =⇒ Γr (Cx)/ Γr (Cy) (r ≥ 1). Unfor-
tunately, neither of the corresponding statements of the other pairings Γr ,≺ and Exp2, /
is in general true, which severely impedes the analysis of the stability of flip–flop states.
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(
1−p p
p 1−p

) 
1− 2p − 2q p q q p

p 1− 2p − 2q p q q
q p 1− 2p − 2q p q
q q p 1− 2p − 2q p
p q q p 1− 2p − 2q


1− 2p p p

p 1− 2p p
p p 1− 2p




1− 2p − q p q p
p 1− 2p − q p q
q p 1− 2p − q p
p q p 1− 2p − q



General templates for (Γ2 ◦ Exp2)–id matrices in dimensions 2,3,4, and 5. Explicit solutions for
the resulting equations are given below.

R2a =
(

0.77184 0.22816
0.22816 0.77184

)
p = 2

3 − 3√v + 1
18 3√v ,

v = 17
216 + 1

72

√
33

R3a =

2/3 1/6 1/6
1/6 2/3 1/6
1/6 1/6 2/3

 p = 1
6

R4a =


0.60205 0.13265 0.13265 0.13265
0.13265 0.60205 0.13265 0.13265
0.13265 0.13265 0.60205 0.13265
0.13265 0.13265 0.13265 0.60205

 q = p, p = 5
18 − 3√v + 1

162 3√v
v = 67

23328 +
1

2592
√

57

R4b =


0.38592 0.11408 0.38592 0.11408
0.11408 0.38592 0.11408 0.38592
0.38592 0.11408 0.38592 0.11408
0.11408 0.38592 0.11408 0.38592

 q = 1
2 −p, p = 1

3 − 3√v + 1
72 3√v

v = 17
1728 + 1

576
√

33

R4c =


0.59594 0.17610 0.05205 0.17610
0.17610 0.59594 0.17610 0.05205
0.05205 0.17610 0.59594 0.17610
0.17610 0.05205 0.17610 0.59594

 q = p − 4p2, p = 1
3 − 3√v + 18

3√v
v = 13

864 + 1
288
√

57

R5a =


0.5568 0.1108 0.1108 0.1108 0.1108
0.1108 0.5568 0.1108 0.1108 0.1108
0.1108 0.1108 0.5568 0.1108 0.1108
0.1108 0.1108 0.1108 0.5568 0.1108
0.1108 0.1108 0.1108 0.1108 0.5568


q = p, p = 13

60 − 3√v + 11
3600 3√v

v = 233
216000 +

1
36000

√
1545

R5b =


0.5346 0.2087 0.0239 0.0239 0.2087
0.2087 0.5346 0.2087 0.0239 0.0239
0.0239 0.2087 0.5346 0.2087 0.0239
0.0239 0.0239 0.2087 0.5346 0.2087
0.2087 0.0239 0.0239 0.2087 0.5346


Values are numerically found
roots of a polynomial of degree 8
which is irreducible over the ratio-
nals.

Figure 17. (Γ2 ◦ Exp2)–id matrices.
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One interesting freak flip–flop state exists in dimension 3, which has the form of a non-
symmetric circulant matrix corresponding with the generating vector (1 − b − c, b, c).
Testing this template for a flip–flop solution in Maple yields an algebraic number α of
the form h(β), where β is a zero of g, where g is a polynomial of degree 16, and where h
is a polynomial of degree 10 divided by a polynomial of degree 9. Numerical computa-
tions yield and verify that the matrix below is a genuine flipflop equilibrium state4.0.795668870 0.004344249 0.199986881

0.199986881 0.795668870 0.004344249
0.004344249 0.199986881 0.795668870

(23)

6.5 Convergence towards equilibrium states

In this section the stability of the equilibrium states in L1 is considered. The setting
is as follows. Let M be the associated matrix of an equilibrium state in L1, let ε be a
perturbation matrix such that M + ε is stochastic. For various types of perturbation ε
the limit or set of possible limits of the perturbed MCL process (M + ε, e(i)=c 2, r(i))=c 2 is
investigated. The states in L1 which are stable in every respect correspond with doubly
idempotent matrices which have precisely one nonzero entry (equal to 1) in each column.
This is stated in Theorem 2. A doubly idempotent matrixM corresponds with an instable
equilibrium state if it has columns with more than one nonzero entry. Two cases can be
distinguished: the case where all columns with multiple entries correspond with nodes
which are attracted to or are part of a single attractor system having more than one
attractor (Lemma 8), and the case where p is not an attractor and is attracted to two
different attractor systems (Lemma 9). For both cases, it is of interest in which respects
the associated clustering of a limit resulting from the perturbed MCL process may differ
from the associated clustering of M .

In the first case, the equilibrium state is shown to be stable on a macroscopic scale which
corresponds with the cluster structure derived from M (Theorem 4). A perturbation ε
of M may thus lead the MCL process (M + ε, e(i), r(i)) to converge towards a different
equilibrium state. Theorem 4 guarantees that this new equilibrium state yields a cluster
interpretation which is identical to or a refinement of the associated clustering of M .
For a restricted class of perturbations ε, Theorem 5 guarantees that the new equilibrium
state yields a cluster interpretation which is identical to the associated clustering of M .
These are perturbations only affecting the principal submatrices M[α], where α is any
index set describing an attractor system inM . In words, Theorem 5 states that for such a
perturbation an attractor system cannot split into a number of smaller attractor systems.

In the second case, if a perturbation of column p is unevenly spread over the attractor
systems towards which p is attracted, then the process (M, e(i), r(i)) will converge to-
wards a state in which p is attracted to just one of those systems. This means that the
phenomenon of cluster overlap is instable in nature (Lemma 9). The following theorem
identifies the equilibrium states in L1 for which the associated matrix M is attractor for

4Though it is not diagonally symmetric; see the next chapter.
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all input matricesM+ε with regard to the MCL process (M+ε, e(i)=c 2, r(i)=c 2), for ε small
enough.

Theorem 2. The MCL process with standard parameters (·, e(i)=c 2, r(i)=c 2), converges
quadratically in the neighbourhood of each nonnegative idempotent column stochastic
matrix for which every column has one entry equal to 1 and all the other entries equal
to 0.

The formulation of this theorem is rather non-technical. What I shall prove is Lemma 7.

Lemma 7. Let M ∈ IR≥0
n×n be a nonnegative idempotent column stochastic matrix for

which every column has one entry equal to 1 and all other entries equal to 0. Let xi be the
row index such that Mxii = 1. Let f > 0 be a real number and let ε be a matrix in IRn×n,
the columns of which add to zero, such that M + ε is column stochastic and nonnegative,
and such that [M + ε]xii ≥ 1− f . Define the matrix δ by Γ((M + ε)2) =M + δ.

For f ≥ 1/4 the inequality maxi,j |δij| ≤ 8f 2 holds.

Proof. The structure of nonnegative idempotent matrices as described in Theorem 1
implies the equality xxi = xi, by the implication i → xi =⇒ xi → xi. It furthermore
follows from the definition of ε that maxi,j |εij| ≤ f . Consider the entry [M + ε]2xii.
The inequalities [M + ε]2xii ≥ [M + ε]2xixi[M + ε]2xii ≥ (1 − f)2 ≥ 1 − 2f hold. Now

consider the entry [Γ(M + ε)]xii. It is true that
∑
k (M + ε)ki2 ≥ (1 − f)2. Furthermore,∑

k≠xi(M + ε)ki ≤ f and thus
∑
k≠xi (M + ε)ki

2 ≤ f 2. It follows that
∑
k≠xi[Γ(M + ε)]ki ≤

f 2/(1−f)2, and consequently [Γ(M+ε)]ki ≥ 1−f 2/(1−f)2. For f < 1/4) the inequality
1 − f 2/(1 − f) ≥ 1 − 2f 2 holds. Combining this inequality and the previous one yields
the desired result. �

Theorem 3. The equilibrium states of the MCL process in L1 for which the associated
doubly idempotent matrices have one or more columns with more than one nonzero entry
are instable.

Two cases are distinguished in proving this theorem, namely the case in which a column
with more than one nonzero entry corresponds with an attractor, and the case in which it
corresponds with a non-attractor. Both cases are illustrated with simple examples which
generalize in a straightforward manner to higher dimensional and more complex cases.

Lemma 8. Let M , εf and L be the matrices

M =
(

1/2 1/2
1/2 1/2

)
εf =

(
f f
−f −f

)
L =

(
1 1
0 0

)
For each f > 0 the MCL process (M + εf , e(i)=c 2, r(i)=c 2) converges towards L.

Proof. The matrix M + εf is idempotent under matrix multiplication for arbitrary f ,
as it is a rank 1 stochastic matrix. Direct computation shows that [Γ(M + εf )]11 equals
(1/4 + f 2 + f)/1/2 + 2f = 1/2 + 2f/(1 + 4f 2). Thus Γ(M + εf ) can be written as
M + ε2f/(1+4f 2). For small f , the deviation of Γ(M + εf ) from M is nearly twice as large
as the deviation of M + εf from M . The lemma follows. �
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The proof of the following lemma is nearly identical and is omitted.

Lemma 9. Let M , εf and L be the matrices

M =

1 0 1/2
0 1 1/2
0 0 0

 εf =

0 0 f
0 0 −f
0 0 0

 L =

1 0 1
0 1 0
0 0 0


For each f > 0 the MCL process (M + εf , e(i)=c 2, r(i)=c 2) converges towards L. �

The previous results do not imply that the MCL algorithm is built on quicksand. The
instability of the phenomenon of cluster overlap cannot be helped, if only the limit of
the MCL process is taken into account. As mentioned before, there is a cure for this by
looking at the specific structure which is present in all iterands of the process (Chap-
ter 7).

The instability of attractor systems consisting of more than one element is not a serious
issue if only regarding clustering purposes. Below it is shown that perturbation of doubly
idempotent matrices M by a matrix ε for which the associated clustering C does not
have overlap, lead the iterands of the MCL process (M + ε, e(i)=c 2, r(i)=c 2) to stay within
a class of matrices the block structure of which only admits a clustering which is a
refinement of C. These statements are assembled in Theorem 4, which is preceded by
two more technical lemmas. This result is extended by Theorem 5, which demonstrates
that for a specific class of perturbations the notion ‘a refinement of’ in Theorem 4 can be
strengthened to ‘identical to’. The proof of this theorem gives confidence that the result
extends to arbitrary perturbations.

If a diagonal block structure can be mapped onto part of a column stochastic matrix
M such that the mass of the columns in this part is highly concentrated in the blocks,
then the entries outside the diagonal blocks tend to zero quadratically in the MCL pro-
cess (M, e(i)=c 2, r(i)=c 2). If it is moreover assumed that the mass of the columns in the
remaining part is (for each column separately) concentrated in a set of rows correspond-
ing to at most one diagonal block, then the entries not belonging to these rows tend
to zero as well. Conceptually, the proof is very similar to that of Lemma 7. The more
complicated setting requires substantial elaboration.

LetM be a column stochastic matrix of dimension n, let f > 0 be a real number. Assume
that there is a strictly increasing row of indices k1, . . . , kl+1 with k1 = 1 and kl+1 ≤
n+ 1 such that the mass of the columns in each principal submatrix M[ki, . . . , ki+1−1],
i = 1, . . . , l is greater than or equal to 1 − f . It is convenient to denote the set of
indices {kx, . . . , kx+1−1} by αx , indicating the xth diagonal block.

Lemmas 10 and 11 hold, and are preparatory to Theorem 4. The corresponding state-
ments for matrices which are permutation–similar to a matrix with the required block
structure follow from the fact that both matrix multiplication and inflation distribute
over simultaneous permutation of rows and columns.

Lemma 10. Let f , M and k0, . . . , kl be as above. Let T2i and T2i+1 be the iterands of
the MCL process (M, e(i)=c 2, r(i)=c 2), where T1 = M . Let αx be the range of indices
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{kx, . . . , kx+1−1} and let q be an index in αx . For f small enough, the entries (Ti)jq
tend to zero for all j with j 6∈ αx as i goes to infinity.

Proof. Suppose that kl+1 < n + 1. Thus, the block diagonal structure (the blocks of
which have large mass) does not fully cover M , as the last block is indexed by the
range kl, . . . , kl+1−1. This is the most general case where nothing is assumed about
the remaining columns kl+1, . . . , n. Let αx and q be as in the lemma, so q ∈ αx . Let p be
any index, 1 ≤ p ≤ n.

Consider the pth entry of the qth column of M2. Consider first the case where kl+1 ≤
p ≤ n. The identity M2

pq =
∑n
i=1MpiMiq holds. Split the latter sum into the parts∑

i∈αx MpiMiq and
∑
i 6∈αx MpiMiq. For i ∈ αx the inequality Mpi ≤ f holds. Since

∑
i∈αx

Miq ≤ 1, the first sum is smaller then or equal to f . By similar reasoning it is found that
the second sum is smaller than or equal to f 2.

Now consider the case where p ∈ αy,y ≠ x. Write the entry M2
pq in three parts:∑

i∈αx MpiMiq,
∑
i∈αy MpiMiq, and

∑
i 6∈αx∪αy MpiMiq. For the first part, Mpi ≤ f and the

entries Miq sum to less than one. For the second part, the entries Mpi sum to less than
|αy | and Miq ≤ f . For the third part, Mpi ≤ f and the entries Miq sum to less than f .
Combining these results yields that the full sum is smaller than or equal to f+|αy |f+f 2.
So after multiplication, the combined mass of all entries in column q which are not in
αx is bounded from above by n(n+ l)(f + f 2), which is of order f .

Estimate the entry [Γ(M)]pq as follows. The sum of squares
∑n
i=1Miq

2 is bounded from
above by 1/n. For p 6∈ αx the inequality Mpq2 ≤ f 2 holds and thus [Γ(M)]pq ≤ nf 2.
The combined mass of all entries in column q which are not in αx is thus bounded
from above by the (crude) estimate n2f , which is of order f 2. Combination of this with
the result on multiplication yields the following. If f is viewed as the error with which
M deviates from the block structure imposed by the index sets αx (in the index range
1, . . . , kl+1−1), then application of Γ ◦ Exp2 to M yields a matrix for which the new error
is of order f 2. This proves the lemma. �

Lemma 11. Let f , M and k1, . . . , kl+1 be as in Lemma 10. Assume moreover that kl+1 <
n + 1 and that for each q ≥ kl+1 there exists a block indexed by αx = {kx, . . . , kx+1−1}
such that the mass in the submatrixM[αx|q] (which is part of column q) is bounded from
below by 1− f . Let Ti be the iterands of the MCL process (M, e(i)=c 2, r(i)=c 2). Then, for f
small enough, all entries (Ti)pq tend to zero for p 6∈ αx as i goes to infinity.

Proof. The proof is very similar to that of Lemma 11. Consider the pth entry of the
qth column of M2. First consider the case where kl+1 ≤ p ≤ n. The identity M2

pq =∑n
i=1MpiMiq holds. Split the latter sum into the parts

∑
i∈αx MpiMiq and

∑
i 6∈αx MpiMiq.

As in the proof of Lemma 11 it is found that the two parts are respectively bounded from
above by f and f 2.

Now consider the case where p ∈ αy,y ≠ x. Writing the entry M2
pq in three parts:∑

i∈αx MpiMiq,
∑
i∈αy MpiMiq, and

∑
i 6∈αx∪αy MpiMiq, it is found that these parts are re-

spectively bounded by f , |αy |f , and f 2. After multiplication, the combined mass of all
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entries in column q which are not in αx is bounded from above by n(n + l)(f + f 2),
which is of order f .

The entry [Γ(M)]pq is estimated as before, yielding [Γ(M)]pq ≤ nf 2, and bounding the
combined mass of the entries [Γ(M)]pq, q 6∈ αx by n2f . Viewing f as the error with
which column q deviates from the structure imposed by αx gives that applying Γ ◦ Exp2
to M yields a matrix for which the new error is of order f 2. This proves the lemma. �

Theorem 4 is a general result on perturbation of equilibrium states for which the asso-
ciated matrix M may have columns with more than one nonzero entry. It states that the
associated clustering of any idempotent limit resulting from the perturbed process must
be a refinement of the clustering associated withM . The proof of the theorem is a direct
consequence of Lemma 10 and 11.

Theorem 4. Let M be a doubly idempotent matrix in IR≥0
n×n for which the associated

clustering C is free of overlap. Let f > 0 and let ε be a matrix in IRn×n, the columns of
which sum to zero and for which maxi,j |εij| ≤ f . The iterands Ti of the MCL process
(M + ε, e(i)=c 2, r(i)=c 2), for f small enough, have the property that (Ti)pq tends to zero as
i goes to infinity, if q 6→ p in the associated graph ofM . Consequently, an idempotent limit
resulting from the process (M + ε, e(i)=c 2, r(i)=c 2) corresponds with a clustering which is
identical to or a refinement of C. �

The following theorem extends this result for a restricted class of perturbations, namely
those that only affect the principal submatrices of the doubly idempotent matrix M
which correspond to an attractor system in the associated clustering of M . Theorem 1
implies that such a submatrix has the form 1

kJk, where Jk is the all one matrix of di-
mensions k × k. Theorem 5 is concerned with limits which may possibly result from
the MCL process ( 1

kJk + ε, e(i)=c 2, r(i)=c 2), where ε is as before. It appears that for
small perturbations ε it is guaranteed that the iterands of the process approach arbi-
trarily close towards the set of rank 1 stochastic matrices, without actually pinpointing
a particular limit point. This implies that an idempotent limit of the perturbed process
(M + ε, e(i)=c 2, r(i)=c 2), where M is doubly idempotent and ε only affects the attractor
systems of M , is guaranteed to yield an associated clustering which is the same as that
of M , except for the cases where overlap occurs.

Theorem 5. Let M be a doubly idempotent matrix in IR≥0
n×n for which the associated

clustering C is free of overlap. Let f > 0 and let ε be a matrix in IRn×n, the columns of
which sum to zero, for which maxi,j |ε|ij ≤ f , and for which εkl ≠ 0 =⇒ k and l are
attractors in the same attractor system in M . That is, ε only affects the diagonal blocks
of M corresponding with its attractor systems.

An idempotent limit resulting from the process (M + ε, e(i)=c 2, r(i)=c 2), has an associated
clustering which is identical to C.

This theorem is a consequence of the following lemma. Note that the diagonal blocks
of M corresponding with its attractor systems are of the form 1

kJk.

Lemma 12. Let f > 0 be a real number, let J be an arbitrary rank 1 column stochastic
matrix in IR≥0

n×n, let ε ∈ IRn×n be a matrix the columns of which sum to zero and for
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which maxi,j |ε|ij ≤ f . For f small enough, the matrix Γ2[(J+ε)2] can be written as J′+δ,
where J′ is rank 1 column stochastic, the columns of δ sum to zero and maxi,j |δ|ij ≤ cf 2,
where c > 0 is a constant independent from J, ε, and f .

Proof. Consider (J+ε)2. This product can be written as J2+Jε+εJ+ε2. The identities
J2 = J and Jε = 0 hold. Furthermore, the sum J+εJ is a rank 1 column stochastic matrix.
Thus the product (J+ε)2 can be written as the sum of a rank 1 column stochastic matrix
and ε2. It is easy to show that maxi,j |ε2|ij ≤ nf 2, which is of order f 2.

Now consider the result of applying Γ2 to J+ε, and compare this with Γ2J. First compute
the renormalization weight for the lth column of Γ2(J + ε). This equals

∑
i(Jil + εil)2.

Split this sum into the parts
∑
i Jil2, 2

∑
i εilJil, and

∑
i εil2. Then 2|∑i εilJil| ≤ 2f ,

and
∑
i εil2 ≤ nf 2. It follows that

∑
i(Jil + εil)2 can be written as

∑
i Jil2 + δd, where

|δd| ≤ 2f +nf 2 (and the d stands for denominator).

Observe that (Jkl + εkl)2 = Jkl2 + 2Jklεkl + εkl2 can be written as Jkl2 + δe, where |δe| ≤
2f + f 2. It follows that [Γ2(J + ε)]kl can be estimated as below.

Jkl − δe∑
i Jil2 + δd

≤ (Jkl + εkl)2∑
i(Jil + εil)2

≤ Jkl + δe∑
i Jil2 − δd

Now let a/b be a positive fraction less than or equal to one, let x and y be real numbers.
Observe that

a− x
b+y = a

b
− x + ay/b

b+y ≥ a
b
− |x| + |y|

b +y
a+ x
b−y = a

b
+ x + ay/b

b−y ≤ a
b
+ |x| + |y|

b −y
Finally,

[Γ2J]kl −
|δe| + |δd|∑
i Jil2 + |δd|

≤ [Γ2(J + ε)]kl ≤ [Γ2J]kl +
|δe| + |δd|∑
i Jil2 − |δd|

Since
∑
i Jil2 ≥ 1/n it follows that the difference |[Γ2(J + ε)]kl − [Γ2J]kl| can be bounded

by cf , where c > 0 is a constant depending on n only. This, combined with the result on
(J + ε)2 proves the lemma. �

Remark. An alternative proof this lemma is given in Section 7.4 of the next chapter,
using results on the Hilbert distance between positive vectors. In this setting the proof
simplifies considerably.

Remark. For the proof of Theorem 5 one needs also consider the behaviour of columns
in M , the associated nodes of which are not attractors. It is an easy exercise to show
that such columns exhibit the same behaviour as the columns of the attractor systems to
which they are attracted. This concludes a series of results on the stability and instability
of the equilibrium states in L1 in both the usual and a macroscopic sense.

The combined results of Theorem 4 and 5 indicate that perturbations of M may only
disturb the phenomenon of overlap, which is inherently instable. Intuitively, it is clear
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that otherwise the clustering associated with an idempotent matrix must be stable un-
der small perturbations. This is because the submatrices corresponding with attractor
systems are effectively the only part of the matrix that may affect the associated clus-
tering; the columns of nodes that are attracted to such a system must follow suit (the
distribution of such a column c in the powers ofM is forced to converge towards the dis-
tribution of the corresponding attractor submatrix, no matter how c is perturbed itself).
The only thing lacking here is a proof that if the set of columns ofM corresponding with
an entire attractor system is perturbed, than the same set of columns must have rank 1
in the limit of the powers of the perturbed matrix.

In Chapter 10 experimental results are discussed concerning the phenomena of overlap
and attractor systems. Current evidence suggests that these phenomena imply the ex-
istence of automorphisms of the input graph. Generally, the MCL process converges so
fast that idempotency can be recognized long before instability of overlap and attractor
systems begin to play a role. This is related to the fact that the examples given here con-
cern small graphs. However, the crucial property is that the natural cluster diameter is
small. Thus, large graphs G for which the natural cluster diameter is small may also lead
the MCL process (TG, e(i), r(i)) to converge towards idempotency before instability starts
to play a role. Finally, by using the results in Section 7.2, overlap can be detected at early
stages. The primary use of the MCL process lies in detecting cluster structure however,
and the observed correspondence between graph automorphisms and respectively clus-
ter overlap and attractor systems does not seem particularly useful for detection of the
latter two.
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7

Structure theory for the MCL process

The MCL process is interesting from a mathematical point of view, since it apparently has
the power to ‘inflate’ the spectrum of a stochastic matrix, by pressing large eigenvalues
towards 1. This effect is strong enough to overcome the effect of matrix exponentiation,
which has the property of exponentiating the associated eigenvalues. The focus in this
chapter is on the Γr operator. The fundamental property established is that Γr maps two
nested classes of stochastic matrices with real spectra onto themselves (Theorem 7). The
largest class is that of diagonally symmetrizable stochastic matrices, i.e. matrices which
are diagonally similar to a symmetric matrix without further constraints. This class is
mapped onto itself by Γr for arbitrary r ∈ IR. Defining diagonally positive semi-definite
(dpsd) as the property of being diagonally similar to a positive semi-definite matrix, the
second class is that of stochastic dpsd matrices. This class is mapped onto itself by Γr
for r ∈ IN.

Using the property that minors of a dpsd matrix A are nonnegative, it is shown that
the relation @ defined on the nodes of its associated graph (or equivalently on the col-
umn, respectively row indices of A) by q @ p ≡ |Apq| ≥ |Aqq|, for p ≠ q, is a directed
acyclic graph (DAG) if indices of identical1 columns, respectively rows are lumped to-
gether (Theorem 9). This generalizes the mapping from nonnegative idempotent column
allowable matrices onto overlapping clusterings (Definition 8). and it sheds some light
on the tendency of the MCL process limits to have a larger number of weakly connected
components than the input graph. It is then shown that applying Γ∞ to a stochastic
dpsd matrix M yields a matrix2 which has spectrum of the form {0n−k,1k}, where k, the
multiplicity of the eigenvalue 1, equals the number of endclasses of the ordering of the
columns of M provided by the associated DAG. It is not necessarily true that Γ∞M is
idempotent. However, the observation is confirmed that Γr tends to inflate the spectrum
of M for r > 1, as ΓrM may be regarded as a function of varying r for fixed M , and as
such is continuous.

In Section 7.1 various lemmas and theorems formalizing the results described above are
given. Section 7.2 introduces structure theory for dpsd matrices and gives properties
of the inflation operator applied to stochastic dpsd matrices. Reductions and decompo-
sitions of dpsd matrices in terms of rank 1 matrices are given in Section 7.3. Hilbert’s
distance for nonnegative vectors, the contraction ratio of a nonnegative matrix, and their
relationship with the MCL process comprise Section 7.4. Conclusions, further research,
and related research make up the last section.

1Modulo multiplication by a scalar on the complex unit circle.
2The matrix Γ∞M is defined as limr→∞ ΓrM, which exists for all stochasticM. See Definition 14.

75



76 STRUCTURE THEORY FOR THE MCL process

7.1 Properties of inflation and stochastic dpsd matrices

At first sight the inflation operator seems hard to get a grasp on mathematically. It
is clear that describing its behaviour falls outside the scope of classical linear algebra,
as it represents a scaling of matrices that is both non-linear, column-wise defined, and
depends on the choice of basis. In general ΓrM can be described in terms of a Hadamard
matrix power which is postmultiplied with a diagonal matrix. For a restricted class of
matrices there is an even stronger connection with the Hadamard–Schur product. These
are the class of stochastic diagonally symmetrizable matrices and a subclass of the latter,
the class of stochastic diagonally positive semi-definite matrices.

Definition 11. A square matrix A is called diagonally hermitian if it is diagonally sim-
ilar to a hermitian matrix. If A is real then A is called diagonally symmetrizable if it is
diagonally similar to a symmetric matrix. Given a hermitian matrix A, equivalent formu-
lations for diagonal symmetrizability are:

i) There exists a positive vector x such that dx−1Adx is hermitian, or equivalently,
such that (xl/xk)Akl = (xk/xl)Alk. If A is real, Identity (24) holds.

dx−1Adx = [A ◦AT]◦
1/2

(24)

ii) There exists a positive vector y such that Ady is hermitian, or equivalently, such
that Akl/Alk = yk/yl. The vector y is related to x above via dx2 = dy or equiva-
lently y = x ◦ x. �

The fact that dx can always be chosen with a positive real x depends on the following.
Let du be a diagonal matrix, where each ui is a complex number on the unit circle. Then
the decomposition A = dxSdx−1, where S is hermitian, can be rewritten as

A = (dxdu)(du−1Sdu)(dudx)−1

with S′ = du−1Sdu hermitian. This depends on the fact that on the unit circle the inverse
of a complex number equals its conjugate.

Definition 12. A square matrix is called diagonally positive-semi definite if it is diago-
nally similar to a positive semi-definite matrix, it is called diagonally positive definite if it
is diagonally similar to a positive definite matrix. The phrases are respectively abbreviated
as dpsd and dpd. �

Remark. If M is diagonally symmetrizable stochastic, and y is such that Mdy is sym-
metric, then My = y ; thus y represents the equilibrium distribution of M . In the theory
of Markov chains, a stochastic diagonally symmetrizable matrix is called time reversible
or said to satisfy the detailed balance condition (See e.g. [114, 154]). A slightly more gen-
eral definition and different terminology was chosen here. The main reason is that the
term ‘time reversible’ is coupled tightly with the idea of studying a stochastic chain via
(powers of) its associated stochastic matrix, and is also used for continuous–time Markov
chains. The MCL process does not have a straightforward stochastic interpretation, and
the relationship between an input matrix and the subsequent iterands is much more
complex. Moreover, it is natural to introduce the concepts of a matrix being diagonally
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similar to a positive (semi–) definite matrix; clinging to ‘time reversible’ in this abstract
setting would be both contrived and unhelpful. The proposed phrases seem appropriate,
since several properties of hermitian and psd matrices remain valid in the more general
setting of diagonally hermitian and dpsd matrices. Lemma 13 lists the most important
ones, which are easy to verify. Probably all these results are known.

Lemma 13. Let A be diagonally hermitian of dimension n, let α be a list of distinct indices
in the range 1 . . .n, let k and l be different indices in the range 1 . . .n. Let x be such
that S = dx−1Adx is hermitian, and thus A = dxSdx−1. Let λ1 ≥ λ2 ≥ · · · ≥ λn be
the decreasingly arranged eigenvalues of A (and S), let a1 ≥ a2 ≥ · · · ≥ an be the
decreasingly arranged diagonal entries of A.

a) A[α|α] = dx[α|α] S[α|α] dx[α|α]−1, in particular, the diagonal entries of A
equal the diagonal entries of S. This implies that the majorization relationship
between eigenvalues and diagonal entries for hermitian matrices carry over to
diagonally hermitian matrices: The spectrum of Amajorizes the vector of diagonal
entries of A:

k∑
i=1

λi ≥
k∑
i=1

ai k = 1, . . . , n

Together with the first equality this implies that diagonally hermitian matrices sat-
isfy the same interlacing inequalities for bordered matrices as hermitian matrices
do.

b) Compk(A) = Compk(dx) Compk(S) Compk(dx
−1), thus the compound3 of a di-

agonally hermitian matrix is diagonally hermitian. Moreover, the compound of a
dpd (dpsd) matrix is again dpd (dpsd).

c) detA[α|α] = detS[α|α], i.e. corresponding principal minors ofA and S are equal.
If A is dpsd then detA[α|α] ≥ 0, with strict inequality if A is dpd.

d) If A is dpsd and Akk = 0 then the kth row and the kth column of A are zero. If A is
dpsd and detA[kl|kl] = 0, then row k and row l are proportional, and column k
and column l are proportional.

e) If A is dpsd, then for each k ∈ IN, there exists a unique dpsd matrix B such
that Bk = A. This matrix is defined by setting B = dxQΛ1/kQHdx−1, where QΛQH
is a unitary diagonalization of S, Λ is the diagonal matrix of eigenvalues of S,
and Λ1/k is the matrix Λ with each diagonal entry replaced by its real nonnega-
tive kth root. This implies that for dpsd A, the fractional power At , t ∈ IR≥0, can
be defined in a meaningful way.

f) If A, B are both of dimension n and diagonally hermitian, dpsd, dpd, then the
Hadamard–Schur product A ◦ B is diagonally hermitian, dpsd, dpd.

Proof. Most statements are easy to verify. For extensive discussion of the majoriza-
tion relationship between diagonal entries and eigenvalues of hermitian matrices, as
well as results on interlacing inequalities see [86]. Statement b) follows from the fact
that the compound operator distributes over matrix multiplication, and the fact that
the compound of a positive (semi–) definite matrix is again positive (semi–) definite.

3See page 37 for the definition of the compound of a matrix.
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See [57] for an overview of results on compounds of matrices. c) follows from the fact
that each term contributing to the principal minor in A is a product

∏
i Akiki+1 where

each ki occurs once as a row index and once as a column index, implying the equalities∏
i Akiki+1 =

∏
(xki/xki+1)Akiki+1 =

∏
Skiki+1 . Then it is a well known property of positive

semi-definite matrices that the principal minors are nonnegative (see e.g. [86], page 404).
The first statement in d) follows from the fact that principal minors (of dimension 2)
are nonnegative. Also, if detA[kl|kl] = 0, then the kl diagonal entry of Comp2(A) is
zero, and consequently the kl row and the kl column are also zero. Some calculations
then confirm the second statement, which will be of use later on. For e) it is sufficient
to use the fact that QΛ1/kQH is the unique positive semi-definite kth root of S (see [86],
page 405). �

Remark. The two most notable properties which do not generalize from hermitian
matrices to diagonally hermitian matrices are the absence of an orthogonal basis of
eigenvectors for the latter, and the fact that the sum of two diagonally hermitian matrices
is in general not diagonally hermitian as well. In the following chapter a well-known
theorem by Fiedler, relating the second eigenvector of a symmetric matrix to connectivity
properties of its underlying graph, is shown to apply to diagonally symmetric matrices
as well.

Statements c) and d) in Lemma 13 are used in associating a DAG with each dpsd matrix
in Theorem 9. First the behaviour of the inflation operator on diagonally symmetrizable
and dpsd matrices is described.

Theorem 6. Let M be a column stochastic diagonally symmetrizable matrix of dimen-
sion n, let dx be the diagonal matrix with positive diagonal such that S = dx−1Mdx is
symmetric, and let r be real. Define the positive vector z by setting zk = xkr (

∑
i Mikr )1/2,

and the positive rank 1 symmetric matrix T by setting Tkl = 1/(
∑
i Mikr )1/2(

∑
i Milr )1/2.

The following statement holds.

dz−1 ( ΓrM) dz = S◦r ◦ T, which is symmetric.

Proof. Define the vector t by tk =
∑
i Mikr . Then

ΓrM = M◦r dt−1

= (dx S dx−1)
◦r
dt−1

= dx◦r S◦r (dx◦r )−1 dt−1

= dt1/2dt−1/2 dx◦r S◦r (dx◦r )−1dt−1/2dt−1/2

= (dt1/2dx◦r ) (dt−1/2S◦rdt−1/2) (dt1/2dx◦r )−1

Since the matrix dt−1/2S◦r dt−1/2 equals S◦r ◦ T , the lemma holds. �

Theorem 7. Let M be square column stochastic diagonally symmetrizable, let z, S and T
be as in Theorem 6.

i) The matrix ΓrM is diagonally symmetrizable for all r ∈ IR.
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ii) If M is dpsd then ΓrM is dpsd for all r ∈ IN , if M is dpd then ΓrM is dpd for
all r ∈ IN.

Proof. Statement i) follows immediately from Theorem 6. Statement ii) follows from
the fact that the Hadamard–Schur product of matrices is positive (semi-) definite if each
of the factors is positive (semi-) definite. Moreover, if at least one of the factors is pos-
itive definite, and none of the other factors has a zero diagonal entry, then the product
is positive definite (see e.g. [87], page 309). These are basic results in the theory of
Hadamard–Schur products, an area which is now covered by a vast body of literature.
An excellent exposition on the subject is found in [87]. It should be noted that r ∈ IN
is in general a necessary condition ([87], page 453). The above result is pleasant in the
sense that it gives both the inflation operator and the MCL process mathematical footing.

Theorem 8. Let M be diagonally symmetric stochastic, and consider the MCL process
(M, e(i), r(i)).

i) All iterands of this process have real spectrum.
ii) If ri = 2 eventually, and ei = 2 eventually, then the iterands of the process
(M, e(i), r(i)) are dpsd eventually.

These statements4 follow from the fact that Exp2 maps diagonally symmetric matrices
onto dpsd matrices and from Theorem 6 ii). �

Theorem 8 represents a qualitative result on the MCL process. Under fairly basic as-
sumptions the spectra of the iterands are real and nonnegative. In the previous chapter
it was furthermore proven that the MCL process converges quadratically in the neigh-
bourhood of nonnegative doubly idempotent matrices These combined facts indicate
that the MCL process has a sound mathematical foundation. The fact remains however
that much less can be said about the connection between successive iterands than in the
case of the usual Markov process. Clearly, the process has something to do with mixing
properties of different subsets of nodes. If there are relatively few paths between two
subsets, or if the combined capacity of all paths is low, then flow tends to evaporate in
the long run between the two subsets. It was actually this observation which originally
led to the formulation of the MCL process as the basic ingredient of a cluster algorithm
for graphs.

The question now rises whether the MCL process can be further studied aiming at quan-
titative results. It was seen that ΓrM , r ∈ IN, can be described in terms of a Hadamard–
Schur product of positive semi-definite matrices relating the symmetric matrices asso-
ciated with M and ΓrM (in Theorem 7). There are many results on the spectra of such

4Clearly the condition under ii) can be weakened; it is only necessary that ei is at least one
time even for an index i = k such that ri ∈ IN for i ≥ k. However, the assumptions under ii) can be
viewed as a standard way of enforcing convergence in a setting genuinely differing from the usual
Markov process.
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products. These are generically of the form

k∑
i=1

σi(A ◦ B) ≤
k∑
i=1

fi(A)σi(B), k = 1, . . . , n.

Here σi() denotes the i–largest singular value, and fi(A) may stand (among others) for
the i–largest singular value of A, the i–largest diagonal entry of A, the i–largest Euclidean
column length, or the i–largest Euclidean row length (see [87]). Unfortunately such in-
equalities go the wrong way in a sense. Since the inflation operator has apparently the
ability to press several large eigenvalues towards 1, what is needed are inequalities of
the type

k∑
i=1

σi(A ◦ B) ≥ ??? .

However, the number of eigenvalues pressed towards 1 by Γr depends on the density
characteristics of the argument matrix, and it could be zero (noting that one eigenvalue 1
is always present). Moreover, Γr has also the ability to press small eigenvalues towards
zero. Clearly, one cannot expect to find inequalities of the ‘≥’ type without assuming
anything on the density characteristics of M . It is shown in the next section that the
classic majorization relation formulated in Lemma 13 a) between the eigenvalues and
diagonal entries of a dpsd matrix, plus a classification of the diagonal entries of a dpsd
matrix, gives useful information on the relationship between eigenvalues of a stochastic
dpsd matrix and its image under Γr .

A second area of related research is found in the field of rapidly mixing Markov chains.
A good reference is [154]. The focus is also on mixing properties of node subsets of
Markov graphs, and the Markov graphs used are generally of the time reversible kind,
i.e. correspond with diagonally symmetrizable matrices. Transfer of results is not likely
however. The derived theorems depend crucially on the fact that a Markov process is
considered which corresponds with the row of powers of a given Markov matrix. Bounds
securing a minimal amount of mixing are sought in terms of the second–largest eigen-
value of a Markov matrix, and in terms of the notion of conductance, which depends on
the equilibrium distribution of the matrix.

7.2 Structure in dpsd matrices

The main objective for this section is to establish structure theory for the class of dpsd
matrices, and study the behaviour of Γ∞ using these results. It will be shown that for
stochastic dpsd M the spectrum of the matrix Γ∞ is of the form {0n−k,1k}, where k is
related to a structural property of M . Throughout this section two symbols are used
which are associated with a dpsd matrix A, namely the symbol @ which denotes an arc
relation defined on the indices of A, and the symbol ∼ which denotes an equivalence
relation on the indices of A. It should be clear from the context which matrix they refer
to. All results in this section are stated in terms of columns; the analogous statements
in terms of rows hold as well.
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Definition 13. Let A be dpsd of dimension n, let k and l be different indices in the
range 1 . . .n.

i) Define the equivalence relation ∼ on the set of indices {1, . . . , n} by k ∼ l ≡
columns k and l of A are scalar multiples of each other via scalars on the complex
unit circle.

ii) Define the arc relation @ on the set of indices {1, . . . , n}, for p ≠ q, by q @ p ≡
|Apq| ≥ |Aqq|.

iii) Let E and F be different equivalence classes in {1, . . . , n}/ ∼. Extend the definition
of @ by setting F @ E ≡ ∃e ∈ E,∃f ∈ F[f @ e]. By definition of @ and ∼ the latter
implies ∀e′ ∈ E,∀f ′ ∈ F[f ′ @ e′]. �

Lemma 14. Let A be dpsd of dimensionn, let k and l be distinct indices in the range 1 . . .n.
Then

l@ k∧ k@ l implies k ∼ l.

�

This follows from Lemma 13 d) and the fact that the premise implies detA[kl|kl] = 0.
Lemma 14 can be generalized towards the following statement.

Theorem 9. Let A be dpsd of dimension n.

The arc @ defines a directed acyclic graph (DAG) on {1, . . . , n}/ ∼.

Note that the theorem is stated in a column-wise manner. The analogous statement for
rows is of course also true. The proof of this theorem follows from Lemma 15. �

Lemma 15. Let A be dpsd of dimension n, suppose there exist k distinct indices pi, i =
1, . . . , k, k > 1, such that p1 @ p2 @ · · · @ pk @ p1. Then p1 ∼ p2 ∼ · · · ∼ pk, and
thus all pi, i = 1, . . . , k are contained in the same equivalence class in {1, . . . , n}/ ∼.
Furthermore, if A is real nonnegative then each of the subcolumns A[p1 . . . pk|pi] is a
scalar multiple of the all-one vector of length k.

Proof. Without loss of generality assume 1 @ 2 @ · · · @ k @ 1. The following inequal-
ities hold, where the left–hand side inequalities follow from the inequalities implied by
detA[i i+1] ≥ 0 and i@ i+ 1.

|Aii+1| ≤ |Ai+1 i+1| ≤ |Ai+2 i+1|
|Ak−1k| ≤ |Akk| ≤ |A1k|
|Ak1| ≤ |A11| ≤ |A21|
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Now let x be positive such that xqApq = xpAqp. On the one hand, |Akk| ≤ |A1k|. On the
other hand,

|Akk| ≥ |Ak−1k|
= xk−1

xk
|Akk−1|

≥ xk−1
xk
|Ak−2k−1|

= xk−1
xk

xk−2
xk−1

|Ak−1k−2|
. . .

≥ xk−1
xk

xk−2
xk−1

· · · x1
x2
|Ak1|

= x1
xk
|Ak1|

= |A1k|
This implies that |Ak−1k| = |Akk| = |A1k| and the identities |Ai−1 i| = |Aii| = |Ai+1 i|
are established by abstracting from the index k. From this it follows that detA[i, i +
1|i, i + 1] = 0, and consequently i ∼ i + 1 for i = 1, . . . , k − 1 by Lemma 14. The
identities |Ai−1 i| = |Aii| = |Ai+1 i| also imply the last statement of the lemma. �

Definition 14. Define Γ∞ by Γ∞M = limr→∞ ΓrM . �

This definition is meaningful, and it is easy to derive the structure of Γ∞M . Each col-
umn q of Γ∞M has k nonzero entries equal to 1/k, (k depending on q), where k is the
number of elements which equal maxp Mpq, and the positions of the nonzero entries
in Γ∞M[1 . . .n|q] correspond with the positions of the maximal entries in M[1 . . .n|q].
Theorem 10. Let M be stochastic dpsd of dimension n. Let DM be the directed graph de-
fined on {1, . . . , n}/ ∼ according to Definition 13, which is acyclic according to Theorem 9.
Let k be the number of nodes in {1, . . . , n}/ ∼ which do not have an outgoing arc in DM .
These nodes correspond with (groups of) indices p for whichMpp is maximal in column p.

The spectrum of Γ∞M equals {0n−k,1k}.

Proof. For the duration of this proof, write SA for the symmetric matrix to which a
diagonally symmetrizable matrix A is similar. Consider the identity

S(ΓrM) = [ΓrM ◦ (ΓrM)T ]◦
1/2

mentioned in Definition 11 i). The matrices ΓrM and SΓrM have the same spectrum. Now,
let r approach infinity. The identity is in the limit not meaningful, since Γ∞M is not nec-
essarily diagonalizable, and thus the left–hand side may not exist in the sense that there
is no symmetric matrix to which Γ∞M is similar. However, the identity ‘spectrum of Γ∞M
= spectrum of [Γ∞M ◦ (Γ∞M)T ]◦1/2 ’ does remain true, since the spectrum depends con-
tinuously on matrix entries (see e.g. [86], page 540), and both limits exist. Thus, it is
sufficient to compute the spectrum of S∞, which is defined as

S∞ = [Γ∞M ◦ (Γ∞M)T]◦
1/2
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Note that the nonzero entries of Γ∞M correspond with the entries of M which are max-
imal in their column. Whenever [Γ∞M]kl ≠ 0 and [Γ∞M]lk ≠ 0, it is true that k @ l
and l @ k. Now consider a column q in S∞, and assume that S∞piq ≠ 0, for i = 1, . . . , t.
It follows that q @ pi ∧pi @ q for all i, thus q ∼ pi for all i, and S∞[p1 . . . pt|p1 . . . pt] is
a positive submatrix equal to 1/tJt , where Jt denotes the all one matrix of dimension t.
This implies that S∞ is block diagonal (after permutation), with each block corresponding
with an equivalence class in {1, . . . , n}/ ∼ which has no outgoing arc in the @ arc rela-
tion. Each block contributes an eigenvalue 1 to the spectrum of S∞. Since the spectrum
of S∞ equals the spectrum of Γ∞M , and there are assumed to be k equivalence classes
with the stated properties, this proves the theorem. �

Observation. It was shown that the inflation operator has a decoupling effect on dpsd
matrices by considering its most extreme parametrization. This result connects the un-
coupling properties of the MCL process to the effect of the inflation operator on the
spectrum of its operand, and it generalizes the mapping of nonnegative column allow-
able idempotent matrices onto overlapping clusterings towards a mapping of column
allowable dpsd matrices onto directed acyclic graphs. This generalization is most ele-
gantly described by considering a dpsd stochastic matrix M and the matrix D = Γ∞M .
From the proof given above it follows that D is a matrix for which some power Dt is
idempotent. The overlapping clustering associated with D by taking as clusters all end-
classes and the nodes that reach them, is exactly the overlapping clustering resulting
from applying Definition 8 on page 58 to Dt . In both cases the clustering is obtained
by taking as clusterings the weakly connected components of the graph. On page 136 a
short remark is made about associating clusterings with MCL iterands in practice.

7.3 Reductions of dpsd matrices

The following simple reductions of dpsd matrices have not yet been of immediate use
in the analysis of the MCL process, but knowledge of their existence surely will not
harm. The first part of Theorem 11 below is a decomposition of a dpsd matrix into
mutually orthogonal rank 1 idempotents. This decomposition is in general possible for
matrices which are (not necessarily diagonally) similar to a hermitian matrix, but is still
of particular interest. It is extensively used in the analysis of rapidly mixing Markov
chains, where the relationship between the diagonal matrix transforming a matrix to
symmetric form and the stationary distribution is of crucial importance. The second part
is a decomposition of a dpsd matrix into rank 1 matrices with a particular bordered 0/1
structure. For this decomposition, diagonal similarity is responsible for preserving the
bordered structure.

Theorem 11. Let A be dpsd of dimension n, such that A = dt−1Sdt. Then A can be
written in the forms
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i) A = ∑n
i=1 λi(A)Ei, where the Ei are a set of mutually orthogonal rank 1 idempo-

tents.
ii) A = dt−1(

∑n
i=1 xixi∗)dt , where the last i− 1 entries of xi are zero. If A is real, the

vectors xi can be chosen real.

The reduction aspect of this statement is that all partial sums
∑k
i=1 xixi∗ are pos-

itive semi-definite as well (by the property that all hermitian forms are nonnega-
tive), so that all partial sums dt−1(

∑k
i=1 xixi∗)dt are dpsd.

Proof. Let ui be a set of orthonormal eigenvectors of S. Then S can be written as
the sum of weighted idempotents Ui = λi(S)uiui∗. Statement i) now follows from set-
ting Ei = dt−1Uidt . Statement ii) is adapted from a similar theorem by FitzGerald and
Horn [59] for hermitian matrices. The proof of ii) follows from their argument for the
hermitian case, given in the lemma below. �

Lemma 16. [59] Let B be positive definite of dimensionn. If Bnn > 0 write bn for the nth col-
umn of B, and let x be the vector bn scaled by a factor Bnn−1/2, so that [xx∗]nn = Bnn.
If Bnn = 0 let x be the null vector of dimension n. In either case, the matrix B − xx∗ is
positive semi-definite and all entries in the last row and column are zero.

Proof. The latter statement is obvious. For the first part, if Bnn = 0 (and thus x = 0) the
proof is trivial, as B − xx∗ then equals C which is positive semi-definite because it is a
principal submatrix of B. Otherwise consider the hermitian form u∗Bu and partition B
and u conformally as

B =
(
C y
y∗ Bnn

)
u =

(
v
z

)
where u and v are complex vectors of dimension n and n− 1 respectively. Expand the
hermitian form u∗Bu as v∗Bv +zy∗v +v∗yz+zBnnz. This expression is greater than
or equal to zero for any choice of u. For arbitrary v fix z in terms of v as −(y∗v)/Bnn.
In the further expansion of the hermitian form u∗Bu two terms cancel, and the remain-
ing parts are v∗Cv − (yv∗y∗v)/Bnn which can be rewritten as v∗(C − (yy∗)/Bnn)v .
Because this expression is greater than or equal to zero for arbitrary v , and because C −
(y∗y)/Bnn equals B − xx∗, the lemma follows.

A positive semi-definite matrix B has a decomposition B = ∑n
i=1 xixi∗ by repeated ap-

plication of Lemma 16, yielding the theorem of FitzGerald and Horn. Using diagonal
similarity, this decomposition translates to the decomposition given in Theorem 11 for
dpsd matrices. �

The following theorem provides a reduction of diagonally symmetric and dpsd stochas-
tic matrices to smaller dimensional counterparts, by taking two states together. This
theorem may be of use for the proof of existence or non-existence of stochastic dpsd
matrices (e.g. with respect to the associated DAGs).

Definition 15. Let M be a diagonally symmetric stochastic matrix of dimension n, and
let π be its stationary distribution, so that dπ−1/2Mdπ1/2 is symmetric. Let k and l be two
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states corresponding with columns of M . The stochastic contraction M′ of M with respect
to k and l is the diagonally symmetric matrix in which the states k and l are contracted
into a new state {kl} as follows.

M′a{kl} = Makπk+Malπl
πk+πl

M′{kl}a = Mka +Mla
M′{kl}{kl} = (Mlk+Mkk)πk+(Mll+Mkl)πl

πk+πl

�

Theorem 12. Taking the stochastic contraction commutes with taking powers of M . If M
is dpsd then so is its stochastic contraction M′.

Proof. Without loss of generality, assume that 1 and 2 are the two states being con-
tracted. Identify the new state {1,2} with the second column and second row. It is
easily verified that the equilibrium distribution π ′ of M′ equals (0, π1+π2, π3, . . . , πn)T
and that Mdπ′ is symmetric. Let SM and SM′ be the matrices to which M and M′ are
respectively diagonally similar. Then [SM′]2a =

√
πa/(π1 +π2)(M1a +M2a), and all en-

tries of SM′ corresponding with column and row indices greater than two are identical
to the entries of SM . This establishes that SM′ can be factorized as below (remembering
that [SM]kl equals

√
(πl/πk)Mkl).

SM′ =



0 0
π1√π1+π2

π2√π1+π2
1

. . .
1

 SM



0 π1√π1+π2

0 π2√π1+π2
1

. . .
1



This factorization establishes both the commuting part of the theorem and the fact
that contraction preserves dpsd-ness. The latter follows from considering a symmetric
form xSM′x; using the factorization it is reduced to a particular symmetric formySMy�.

7.4 Hilbert’s projective metric

For convenience, all vectors and matrices in this section are assumed to be positive.
This is not strictly necessary, see e.g. [37]. Hilbert’s projective metric d for two positive
vectors x and y both of dimension n is defined as

d(x,y) = ln

[
(max

i

xi
yi
)(max

j

yj
xj
)
]
= max

i,j
ln

(
xiyj
xjyi

)

It can be defined in the more general setting of a Banach space [30]. Hilbert’s metric
is a genuine metric distance on the unit sphere in IRn, with respect to any vector norm
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(see [30]). For a positive matrix A define the contraction ratio τ and the cross-ratio
number φ by

τA = sup
x,y

d(Ax,Ay)
d(x,y)

φA = min
i,j,k,l

AikAjl
AjkAil

These are related to each other via

τA = 1− √φA
1+ √φA(25)

For proofs see [21, 76, 149]. The quantity τ is used to measure the deviation of large
products of nonnegative matrices from the set of rank 1 matrices (see e.g. [30, 37, 76,
149]). There is a straightforward connection between Γr and φ. For M nonnegative
stochastic,

φ(ΓrA) = (φA)r(26)

It follows immediately from the definition of τ , that for A and B nonnegative,

τ(AB) ≤ τ(A)τ(B) c.q. τ(Ak) ≤ τ(A)k(27)

Observation. Equations (26) and (27) supply the means for a simple5 proof of
Lemma 12. Suppose that M is a rank 1 column stochastic matrix (so that φM = 1),
and that M′ = M + E is a perturbation of M such that φM′ = 1 − ε. Equation 25 yields
that τM′ is of order 1 − 1/2ε. Then φΓ2M′ is of order 1 − 2ε and τΓ2M′ is of order ε.
So for small perturbations inflation has a linear effect on the contraction ratio, whereas
quadratic expansion (i.e. Exp2) squares the contraction ratio. It follows immediately that
the MCL process applied to M′ will result in a limit that has rank equal to one. �

Experiments with the MCL process suggest that if the process converges towards a dou-
bly idempotent limit, then appropriately chosen submatrices of the iterands have the
property that their contraction ratio approaches zero. For example, consider an MCL pro-
cess converging towards the limit 

1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0


partition the iterands Mi as

Mi =
(
A B
C D

)
with each matrix A, . . . ,D of dimension 2 × 2. The observation is that all four quanti-
ties τ(A|B), τ(BT |DT), τ(C|D), and τ(AT |CT) tend to zero as i goes to infinity. This
presumption is not of crucial importance for the matter of convergence, since it is al-
ready known that the MCL process converges quadratically (in one of the usual matrix
norms) in the neighbourhood of doubly idempotent matrices. However, the connection
between Γr and φ may just lead to new insights in the MCL process. What is needed is
results on the square of the matrix Mi above (not assuming anything on the dimension

5For simplicity it is still assumed that all vectors under consideration are positive.
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of Mi), in term of the inherited partition. Thus, bounds are sought for τ(A2 + BC|AB +
BD), τ((AB+BD)T |(CB+D2)T ), τ(CA+DC|CB+D2), and τ((A2+BC)T |(CA+DC)T ).
For this it may be interesting to investigate a notion like ‘mutual contraction ratio’, e.g.
the quantity τ′ defined as

τ ′(A, B) = sup
x,y

d(Ax, By)
d(x,y)

It is difficult to assess the potential of this line of research, but it is interesting to see
that inflation and expansion can be described in the same framework. As was the case
for majorization though (Chapter 6), the two operators seek different corners of the
framework, as exhibited by Equations (25), (26), and (27). For the simple case of rank 1
stochastic matrices this leads to a conceptually more appealing proof of Lemma 12.

7.5 Discussion and conjectures

Theorem 9 and 10 shed light on the structure and the spectral properties of the iterands
of the MCL process. Theorem 9 also gives the means to associate an overlapping cluster-
ing with each dpsd iterand of an MCL process, simply by defining the end nodes of the
associated DAG as the unique cores of the clustering, and adding to each core all nodes
which reach it.

There is a further contrasting analogy with the usual Markov process. Consider a Markov
process with dpsd input matrixM . Then the differenceMk−Ml, k < l, is again dpsd (they
have the same symmetrizing diagonal matrix, and the spectrum of Mk −Ml is nonneg-
ative). From this it follows that all rows of diagonal entries M(k)ii, for fixed diagonal
position ii, are non-increasing. Given a stochastic dpsd matrix M , the Γr operator, r > 1,
(in the setting of dpsd matrices) always increases some diagonal entries (at least one).
The sum of the increased diagonal entries, of which there are at least k if k is the num-
ber of endnodes of the DAG associated with both M and ΓrM , is a lower bound for the
combined mass of the k largest eigenvalues of ΓrM (Lemma 13 a)).

The MCL process converges quadratically in the neighbourhood of the doubly idempo-
tent matrices. Proving (near–) global convergence seems to be a difficult task. I do believe
however that a strong result will hold.

Conjecture 1. All MCL processes (M, e(i), r(i)), with ei = 2, ri = 2 eventually, converge
towards a doubly idempotent limit, provided M is irreducible, dpsd, and cannot be de-
composed as a Kronecker product of matrices in which one of the terms is a flip–flop
equilibrium state.

It is a worthy long standing goal to prove or disprove this conjecture. Subordinate ob-
jectives are:

i) For a fixed MCL process ( · , e(i), r(i)), what can be said about the basins of attrac-
tion of the MCL process. Are they connected?
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ii) What can be said about the union of all basins of attraction for all limits which
correspond with the same overlapping clustering (i.e. differing only in the distri-
bution of attractors)?

iii) Can the set of limits reachable from a fixed nonnegative matrix M for all MCL pro-
cesses (M, e(i), r(i)) be characterized? Can it be related to a structural property
of M?

iv) Given a node set I = {1, . . . , n}, and two directed acyclic graphs D1 and D2 de-
fined on I, under what conditions on D1 and D2 does there exist a dpsd matrix A
such that the DAGs associated with A according to Theorem 9, via respectively
rows and columns, equals D1 and D2? What if A is also required to be column
stochastic?

v) Under what conditions do the clusters in the cluster interpretation of the limit of
a convergent MCL process (M, e(i), r(i)) correspond with connected subgraphs in
the associated graph of M?

vi) For A dpsd, in which ways can the DAG associated with A2 be related to the DAG
associated with M?

vii) Is it possible to specify a subclass S of the stochastic dpsd matrices and a sub-
set R′ of the reals larger than IN, such that ΓrM is in S if r ∈ R′ and M ∈ S?

Remark. There is no obvious non-trivial hypothesis regarding item vi), unless such a
hypothesis takes quantitative properties of M into account. This is due to the fact that
the equilibrium state corresponding with a connected component ofM corresponds with
a DAG which has precisely one endclass. The breaking up of connected components
which can be witnessed in the MCL process is thus always reversible in a sense. With
respect to v), I conjecture the following.

Conjecture 2. The clustering associated with a limit of an MCL process with dpsd input
matrix M , corresponds with subsets of the node set of the associated graph G of M which
induce subgraphs in G that are connected.

There are several lines of research which may inspire answers to the questions posed
here. However, for none of them the connection seems so strong that existing theo-
rems can immediately be applied. The main challenge is to further develop the frame-
work in which the interplay of Γr and Exps can be studied. Hadamard–Schur theory was
discussed in Section 7.1. Perron–Frobenius theory, graph partitioning by eigenvectors
(e.g. [138, 139]), and work regarding the second largest eigenvalue of a graph (e.g. [6, 41]),
form a natural source of inspiration. These are discussed in the next chapter. The theory
of Perron complementation and stochastic complementation as introduced by Meyer may
offer conceptual support in its focus on uncoupling Markov chains [125, 126]. There are
also papers which address the topic of matrix structure when the subdominant eigen-
value is close to the dominant eigenvalue [77, 135]. The literature on the subject of
diagonal similarity does not seem to be of immediate further use, as it is often focussed
on scaling problems (e.g. [51, 83]). For the study of flip–flop equilibrium states the many
results on circulant matrices are likely to be valuable, for example the monograph [42],
and the work on group majorization in the setting of circulant matrices in [66]. It may
also be fruitful to investigate the relationship with Hilbert’s distance and the contraction
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ratio for positive matrices, introduced in Section 7.4. Regarding flip–flop states, several
interesting questions are open:

i) For the MCL process with both parameter rows constant equal to 2, are there
orbits of length greater than 2 in the class of dpsd matrices?

ii) Must an indecomposable dpsd (in terms of the Kronecker product) flip–flop state
necessarily be a symmetric circulant? It seems obvious that this must be the case.

iii) For flip–flop states which are symmetric circulants, how close is is Exp2 to Γ1/2?
Note that both operators have a contracting effect on positive matrices.

iv) For each dimension n, does there exist a flip–flop state which is the circulant of
a vector

(p1, p2, p3, . . . , pk−1, pk, pk−1, . . . , p2), n = 2k− 2

(p1, p2, p3, . . . , pk−1, pk, pk, pk−1, . . . , p2), n = 2k− 1,

where all pi are different, i = 1, . . . , k?
v) For which r > 1 and s > 1 do there exist nonnegative dpsd matrices A such that
Γr (As) = A, where As is defined according to Lemma 13e)?

Conjecture 3. For every dpsd flip–flop equilibrium state which is indecomposable in
terms of the Kronecker product, there is no trajectory leading to this state other than
the state itself.
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The relationship between λ2(G) and cluster
structure

There are many results regarding the relationship between the spectrum of a graph and
its connectivity properties. In particular, a connected graph having large subdominant
eigenvalue — relative to the dominant eigenvalue — can be separated into two sets of
vertices such that the two induced subgraphs have a high degree of connectivity. These
statements can be made precise via two (well known) approaches, namely via the spec-
trum and eigenvectors of a graph G = (V, E,w) and its adjacency matrix A, or via the
spectrum and eigenvectors of the associated Laplacian matrix1. Section 8.1 gives the
basic results regarding the Laplacian; the results for the adjacency matrix itself are given
in Section 8.2. The last section contains a short account of the role played by subdom-
inant eigenvalues in respectively the theory of stochastic uncoupling and the theory of
rapidly mixing Markov chains.

8.1 Partitioning via the Laplacian

Definition 16. Let G = (V, E,w) be a weighted undirected graph without loops on n
nodes. Let A be the adjacency matrix of G. Let D be the diagonal matrix of dimension n
where Dii equals the sum of weights of all arcs incident to i. The Laplacian L of G is
defined as

L = D −A(28)

�

It is easy to prove that all eigenvalues of the Laplacian L of G are nonnegative, and
that the multiplicity of the eigenvalue zero equals the number of connected components
of G. For each connected component of G, the characteristic vector of that component
is a corresponding eigenvector of G with eigenvalue zero. Henceforth, I will assume that
the graph G is connected, that λn(G) = 0 and that λn−1(G) > 0, and that the dimension
of G is even. The latter simplifies the exposition and does not really limit its significance.
The first part of this section follows the accounts given in [53] and [137]. Consider the
problem of finding an optimal cut of G, that is, a balanced2 bipartition (S, Sc) such that
the weight δ(S, Sc) of the cut vertices is minimized. Let x be the characteristic difference

1For surveys on the Laplacian matrix of a graph, see [72, 71, 124].
2For the definition see page 35.
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vector associated with the bipartition (S, Sc). The quantity δ(S, Sc) can be rewritten as
follows.

δ(S, Sc) = 1
4

∑
(i,j)∈E

(i,j)∈S×Sc

(xi − xj)2Aij(29)

This formulation of the cut problem turns out to be equivalent to the minimization
of a quadratic form over all balanced characteristic difference vectors. Let x be the
characteristic difference vector associated with a balanced bipartition (S, Sc). Noting
that the sum of the entries in D equals twice the sum of all edge weights, one finds that∑

(i,j)∈E
Aij(xi − xj)2 =

∑
(i,j)∈E

xi2Aij + xj2Aij − 2Aijxixj

=
∑
i∈V

Diixi2 − 2
∑

(i,j)∈E
Aijxixj

which establishes

xTLx = xTDx − xTAx(30)

=
∑
i∈V
Diixi2 − 2

∑
(i,j)∈E

xixjAij

= 4 δ(S, Sc)

Thus, a minimal solution to the cut problem is equivalent to the minimization of the
quadratic form xTLx under the condition that x is a characteristic difference vector. Of
course this problem is no more tractable, but a straightforward relaxation of the new
formulation is. That is, if the requirement that x is a characteristic difference vector is
replaced by only demanding that

∑
xi = 0 (and naturally requiring that ‖ x ‖2 is fixed,

say, equal to one), then the problem is tractable and a solution is immediately known.
Writing ui for the eigenvector corresponding with eigenvalue λi(L), one obtains

min∑
xi=0

xi=±1

xTLx = min∑
xi=0

xi=±1/
√
n

n xTLx(31)

≥ min∑
xi=0

‖x‖2=1

n xTLx

= n un−1
TLun−1

= n λn−1(L)

Why is the derivation just given valid? The second equality is the special case k = 1 of
the famous Raleigh–Ritz variational characterization of the eigenvalues and eigenvectors
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of a hermitian matrix H given below, where the vectors ui are again the eigenvectors
corresponding with the eigenvalue λi(H).

λn−k(H) = min
‖x‖2=1

x⊥un−k+1 ,... ,un

x∗Hx

The minimum is attained for the eigenvector un−k. There are many more variational
characteristics of eigenvalues such as this; the book [86] contains an extensive collection
of results. In the specific case of Derivation (31), the eigenvector un is the all–one vec-
tor corresponding with eigenvalue zero. The vector un−1 of a Laplacian is often called
the Fiedler vector, honouring the pioneering work of Miroslav Fiedler in this area. The
following important result is due to Fiedler.

Theorem 13. (Fiedler, [56]) Let G = (V, E,w) be an undirected weighted graph, let u be
the Fiedler eigenvector of the Laplacian of G. For any real number r > 0, the subgraphs
induced by the sets {vi ∈ V | ui ≥ −r} and {vi ∈ V | ui ≤ r} are connected.

So the Fiedler eigenvector u yields at least one bipartition for which the induced sub-
graphs are connected, though it need not be balanced. A different method is to com-
pute the median m of the values ui, to segment V into two parts according to the sign
of ui−m, and to distribute the nodes vi with ui =m such that the resulting partition is
balanced. There is no hard guarantee that this partition induces connected subgraphs,
but it was shown by Chan et al [32] that the characteristic difference vector x thus ob-
tained is best in any l-norm, that is, the minimum over all balanced characteristic differ-
ence vectors y of the quantity ‖ y −√nun−1 ‖l is achieved for x. These results are the
starting point for a proliferation of spectral approaches to partitioning, resulting from
imposing additional constraints, (e.g. introducing weights on the vertices), additional
objectives (e.g. k-way partitioning), and additional solution techniques (e.g. computing
the d eigenvectors corresponding with the d smallest eigenvalues of L — the geometric
properties of the eigenvectors can then be used in different ways to obtain partitions
of V ). See the references on page 28.

Example. The Fiedler vector of the simple graph G3 on page 45, repeated below, is ap-
proximately equal to

(0.325,0.121,−0.0354,−0.250,0.0344,0.420,0.276,−0.235,−0.325,0.381,−0.325,−0.387)T

This vector induces a linear ordering on the nodes of G3: 12 < {11,9} < 4 < 8 < 3 <
5 < 2 < 7 < 1 < 10 < 6. In this case, there are precisely six negative and six positive
values, yielding the bipartition ( {1,2,5,6,7,10}, {3,4,8,9,11,12} ) which cuts 3 edges.
This partitioning induces two connected subgraphs, where the connection of the node 3
is weakest. By moving the separating value successively to 0.04, 0.0, −0.04, and −0.15,
the following partitions are obtained.
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{1,6,7,10} {2,3,4,5,8,9,11,12}
{1,2,6,7,10} {3,4,5,8,9,11,12}
{1,2,5,6,7,10} {3,4,8,9,11,12}
{1,2,3,5,6,7,10} {4,8,9,11,12}

1 2 3 4

5

6 7 8 9

10 11 12

These four partitions correspond with four different ways of distributing the elements of
one of the three clusters obtained by the MCL algorithm over the remaining two clusters.

8.2 Partitioning via the adjacency matrix

The spectrum of the adjacency matrix of a graph is also related to its structural proper-
ties. However, the exposition is not as clean as for the Laplacian. The defining inequality
in Theorem 14 below is similar to Theorem 13, except for the appearance of the entries
of u.

Theorem 14. (Fiedler [56]). Let G = (V, E,w) be a connected undirected weighted graph
with adjacency matrix A of dimension n. Let u and v be the eigenvectors corresponding
with eigenvalues λ1(A) and λ2(A) respectively.

For any r ≥ 0, the submatrix A[αr ] is irreducible, where αr is the index list formed from
the set {

i ∈ {1, . . . , n} | vi + rui ≥ 0
}

(32)

�

Note that the signs of the eigenvector u can be reversed, so the statement in the theorem
has a symmetric counterpart. The statement is easily generalized towards diagonally
symmetric matrices, which is again illustrative for the fact that diagonally symmetric
(hermitian) matrices are the ‘next nice thing’ to have after symmetric (hermitian) matri-
ces.

Theorem 15. Let A be a diagonally symmetric irreducible matrix, let u and v be the
eigenvectors corresponding with the eigenvalues λ1(A) and λ2(A) respectively.

For any r ≥ 0, the submatrix A[αr ] is irreducible, where αr is the index list formed from
the set {

i ∈ {1, . . . , n} | vi + rui ≥ 0
}

(33)

Proof. Let dt and S be respectively a diagonal matrix and a symmetric matrix such
that S = dt−1Adt. Any eigenvector w of A corresponds with an eigenvector dt−1w of S.
Applying Theorem 14 to S yields that the set{

i ∈ {1, . . . , n} | [dt−1v]i + r[dt−1u]i ≥ 0
}

(34)
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is connected in the underlying graph of S. Noting that the underlying (simple) graph of S
is identical to the underlying (simple) graph of A, and rewriting the set above as{

i ∈ {1, . . . , n} | [dt−1(v + ru)]i ≥ 0
}

(35)

proves the theorem, since scaling by a positive factor does not change the sign of a
number. �

The following is a generalization of a lemma by Powers [139].

Lemma 17. Let A be a nonnegative irreducible matrix with Perron eigenvector u. Sup-
pose A has a real positive eigenvalue λk(A), k > 1, corresponding with the eigenvector v .
Without loss of generality, assume that v and A are conformally permuted according to
the sign structure of v such that

v =

 x
−y

0

 A =

 APP APN AP0

ANP ANN AN0

A0P A0N A00


Then λ1(APP) > λk(A) and λ1(ANN) > λk(A).

Proof. The proof of this lemma is very simple. The vector v must have both positive
and negative entries, because the Perron vector of a nonnegative irreducible matrix is
the only real eigenvector with nonnegative entries only (See Theorem 16), so x and y
are both non-void. This theorem also establishes that λ1(APP) and λ1(ANN) are both
positive real. The identity APPx − APNy = λk(A)x implies that APPx > λk(A)x, and
similarly ANNy > λk(A)y . The result now follows from Theorem 16 given below. Powers
proved this lemma for symmetric matrices; the only extra argument needed is that v
still must have both positive and negative entries if the requirement of symmetry is
dropped. �

Example. Consider the associated Markov matrixM ofG3 defined on page 50. Its Perron
eigenvector is the equilibrium distribution π which is simply the scaling vector (5, 4, 4,
5, 5, 3, 4, 5, 5, 4, 5, 3)T . Its second largest eigenvalue is approximately 0.923 with
corresponding eigenvector

(2.40, .794,−0.0872,−1.66,0.379,1.74,1.64,−1.56,−2.17,2.18,−2.17,−1.48)T

Setting r=0 in Theorem 15 gives the two sets {3, 4, 8, 9, 11, 12} and {1, 2, 5, 6, 7, 10}.
Varying r in the range [−2,0.5] gives exactly the same series of bipartitions as found
with the Laplacian (which is accidental). Focusing on the bipartition found for r=0,
and using Lemma 17 with k=2, it is established that the submatrices M[3,4,8,9,11,12]
and M[1,2,5,6,7,10] both have the Perron root lower bounded by 0.923. The lower
bound implies that for each submatrix, the average mass of their columns is at
least 0.923, which indicates that the submatrices are sparsely connected. Numerical
verification yields indeed that the respective Perron roots are approximately 0.939
and 0.938. The clustering resulting from the MCL process on page 53 on this graph
induces submatrices M[1,6,7,10], M[2,3,5], and M[4,8,9,11,12] that have respective
Perron roots 0.893, 0.700, and 0.928.
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Remark. Any nonnegative symmetric matrix is diagonally similar to a stochastic matrix.
If S is symmetric, and u is the eigenvector corresponding to the largest eigenvalue λ1,
then it is easy to verify that λ1

−1duSdu−1 is stochastic and has eigenvector u ◦ u for
eigenvalue one.

Theorem 16. [19], page 26 ff. Let A be a square nonnegative matrix.

i) The spectral radius ρ(A) is an eigenvalue of A and there is a nonzero nonnegative
vector x such that Ax = ρ(A)x.

ii) If y is a nonnegative vector such that Ay ≥ αy , α > 0, then ρ(A) ≥ α.
iii) If in addition A is irreducible, then ρ(A) is a simple eigenvalue and x is positive,

and any nonnegative eigenvector of A is a multiple of x.
iv) If A is irreducible and y is nonnegative such that Ay > αy , then ρ(A) > α. �

8.3 Stochastic matrices, random walks, and λ2

There are several results relating the presence or absence of a gap between the dominant
eigenvalue and subsequent eigenvalues of a stochastic matrix. Meyer [125] developed the
elegant framework of stochastic complementation, in which he described the behaviour
of nearly completely reducible systems. These systems have the property that the associ-
ated matrixM has a block structure such that the mass of the off-diagonal blocks is very
small, though the matrix as a whole is irreducible. Assume that the largest eigenvalue of
each of the diagonal blocks is well separated from the second eigenvalue. It was shown
in [125] that in the short run the powers of M behave as though it were completely re-
ducible, with each diagonal block approaching a local equilibrium. After the short–run
stabilization, the powers of M converge towards a global equilibrium state. During this
long–run convergence the local equilibria are roughly maintained but their relative mass
changes to accommodate for the global equilibrium. The theory of stochastic uncoupling
is a special case of the theory of Perron uncoupling (uncoupling in nonnegative matrices),
which was also researched by Meyer [126].

The second largest eigenvalue also plays an important role in the theory of rapidly mix-
ing Markov chains. In this setting random walks are used for probabilistic measurement
of large sets which are otherwise difficult to quantify. Random walks are simulated on
large graphs in which the vertices are the combinatorial structures which are of interest.
The graphs are typically exponentially large; the aim is either one of a) approximately
counting the number of structures or b) their uniform generation. Without going into
this matter too deeply, the idea is to simulate a Markov chain via the neighbour relation
attached to the graph. The state space is generally exponentially large. The crucial idea
is now that a polynomial number of steps should be sufficient to get lost from a given
starting position. The necessary condition for this to happen is that the subdominant
eigenvalue of the Markov chain is sufficiently separated from the dominant eigenvalue 1,
where the notion of ‘sufficiency’ is governed by the relationship between transition prob-
abilities and the stationary distribution. For the analysis of mixing properties of Markov
chains, extensive use is made of the first decomposition given in Theorem 11. Under the
mentioned condition the Markov chain approach leads to randomized polynomial time
approximation schemes.
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Among others, Markov chains can be constructed for the uniform generation of maximal
matchings of a simple graph, the counting of the number of linear extension of a partial
order, the number of forests in dense graphs, and graphs with good expanding proper-
ties. Results in a surprisingly different direction are that both the volume of a convex
body and the permanent of a matrix (the computation of both is ]P–hard) can be ap-
proximated (in a satisfactory sense) via Markov chain techniques. A good monograph on
the subject of random generation, counting, and rapidly mixing Markov chains is [154],
and the survey article [114] on random walks on graphs gives a short account of ideas
and results.
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Part III

Markov Cluster Experiments
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Comparing different graph clusterings

It is in general a non-trivial task to compare or rank different clusterings of the same
graph. The reasons for this are much the same as for the fruitlessness of postulating
the existence of a ‘best’ clustering. A comparison procedure for clusterings almost in-
evitably requires a formula that takes as input a graph and a clustering, and outputs a
real number in some range, say between zero and one. Different clusterings of a single
graph are then compared by plugging them into the formula and ordering them accord-
ing to the respective scores. Clusterings with highly differing degrees of granularity are
likely to have differing scores, and this may tell little about which levels of granularity
are reasonable and which are not.

However, the above primarily implies that automated comparison of clusterings for
which little context is known should be handled with care. Useful performance crite-
ria do exist, and if applied in conjunction with information about cluster granularity
they can be put to good use. In this chapter two different performance criteria are for-
mulated, one for 0/1 (simple) graphs, and one for weighted graphs. Both criteria yield a
number within the range [0,1]. They are used in Chapter 12 to test the performance of
the MCL algorithm on randomly generated test graphs.

The criterion for simple graphs is derived by demanding that it yields the perfect score 1
if and only if the graph is a direct sum of complete graphs and the clustering is the
corresponding canonical clustering. This criterion is first formulated globally in terms
of the incidence matrix associated with the simple graph, and then in terms of an av-
erage of scores for all nodes in the graph. The latter formulation is used to derive a
formula that measures how efficient a characteristic vector (corresponding with a clus-
ter) captures the mass of a nonnegative vector (corresponding with an element or node
contained within the cluster). The average score over all nodes in the graph yields the
weighted performance criterion for clusterings of nonnegative graphs. The formula con-
tains a scaling factor which is a Schur convex function on the set of nonnegative nonzero
vectors. Several properties of this function are derived.

A formula for a metric distance between two partitions (non-overlapping clusterings) is
given in Section 9.3. This distance is computed as the sum of two numbers, where each
number represents the distance of one of the two partitions to the intersection of the two
partitions. If one of the two numbers is very small compared to the other, this implies
that the corresponding partition is nearly a subpartition of the other partition.
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9.1 Performance criteria for simple graphs

Consider a simple graph and a clustering of this graph. If the rows and columns of the
incidence matrix of the graph are permuted such that nodes in the same cluster corre-
spond with consecutive columns (and rows), then the clustering is pictorially represented
by a diagonal of blocks in the permuted matrix. (See Figure 4 on page 11 and Figure 27
on page 131).

It is desirable that the clustering covers as many edges as possible, and does so effi-
ciently. This means that the blocks should cover as many edges or ‘ones’ as possible,
while there should be few zeroes within the blocks and few edges outside. It is easy to
cover all of the edges by taking the top clustering (implying a single block consisting of
the whole matrix), but then all zeroes are covered as well. This suggests that clusterings
should be punished for each edge that is not covered by the clustering, and for each edge
that is suggested by the clustering but not present in the graph, i.e. a within–block zero.
Definition 17 gives a simple formula expressing this idea.

Definition 17. Let G be a simple graph on n nodes with or without loops and let P be a
partition of G. The naive performance criterion for G and P is defined to be

Perf(G,P) = 1− #1
out(G,P)+ #0

in(G,P)
n(n− 1)

(naive)(36)

where #1
out(G,P) denotes the number of edges not covered by the clustering (i.e. an

edge (i, j) in G for which i and j are in different clusters of P), and where #0
in(G,P)

denotes the number of edges suggested by P absent in G (i.e. all pairs i ≠ j for which i
and j are in the same cluster of P and (i, j) is not an edge in G). �

Note that by disregarding loops in the definition (i.e. only considering pairs i ≠ j for
#0

in(G,P)) it is achieved that clusterings are not punished for putting a node i in the
same cluster as itself, if a loop from i to i is absent. This ensures that the best clustering
(scoring the maximum performance 1) for the empty graph on n nodes (with no links
between different nodes) is the bottom clustering consisting of n singletons. Note that
this graph can be viewed as a direct sum of n times the complete graph K1. In general,
direct sums of complete graphs are the only graphs for which a clustering yielding per-
formance 1 exists, and this is exactly what intuition demands. The scaling factorn(n−1)
guarantees that the performance criterion lies between 0 and 1 for all simple graphs. The
performances of the top and bottom clusterings are related to each other by the fact that
they add up to 1, as stated in the following basic property.

Property. Let G be a simple graph on n nodes with or without loops. Denote the top
and bottom clusterings respectively by Top and Bottom. The following identity holds:

Perf(G,Top)+ Perf(G,Bottom) = 1(37)

The proof is nearly trivial and is omitted here. The criterion in Definition 36 is useful
only for clusterings of graphs which are not too sparse. For large sparse graphs the
numerator in (36) usually pales in comparison to the denominator. This implies that
for such graphs the naive performance criterion is close to one and almost constant for
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different clusterings as long as they are not too absurd. A slight modification of the def-
inition remedies this drawback. To this end, the quality of a clustering is measured per
node rather than in one stroke. First, consider what it takes to formulate definition 17
in terms of coverage of the respective nodes.

Definition 18. Let G be a simple graph on n nodes with or without loops, let M be its
incidence matrix, let P be a partition of G, and let v be a node in G. Denote the cluster
in P containing v by Pv . The naive coverage measure of Pv for v is defined to be

Cov(G, Pv, v) = 1− #1
out(G, Pv, v)+ #0

in(G, Pv, v)
n− 1

(naive)(38)

where #1
out(G, Pv, v) denotes the number of edges going out from v not covered by Pv

(i.e. a nonzero entry Miv for which i 6∈ Pv ) and where #0
in(G, Pv, v) denotes the number of

edges suggested by Pv for v absent in G (i.e. all labels i ≠ v for which i ∈ Pv and Miv is
zero). �

Averaging the coverage of a node according to Definition 18 over all nodes in a graph,
yields the naive performance criterion from Definition 17. The coverage according to
Definition 18 has the advantage that it can be easily modified such that its discriminat-
ing power applies to clusterings of sparse graphs as well. This is done by making the
denominator smaller, whilest maintaining the property that the whole expression lies
between 0 and 1.

Definition 19. Let G be a simple graph on n nodes with or without loops, let M be its
incidence matrix, let P be a partition of G, and let v be a node in G. Denote the set of
neighbours of v (excluding v itself) in G by Sv , and denote the cluster in P containing v
by Pv . The simple coverage measure of Pv for v is defined to be

Cov(G, Pv, v) = 1− #1
out(G, Pv, v)+ #0

in(G, Pv, v)
|Sv ∪ Pv |

(scaled)(39)

where #1
out(G, Pv, v) and and #0

in(G, Pv, v) are as in the previous definition. �

It is easy to see that the quantity defined by 39 lies between 0 and 1, and is equal to 1 only
if the sets Sv and Pv are the same. It should be noted that this definition of coverage no
longer yields the property that the respective performances of top and bottom clustering
add to 1, which is a small sacrifice for its increased expressive power.

9.2 Performance criteria for weighted graphs

Definition 18 provides the inspiration for a measure of coverage telling how well a cer-
tain characteristic vector (representing a cluster) captures the mass of a nonnegative
vector. The measure (given in Definition 21) is independent of scaling. An important
distinction from the preceding definitions is that the loop (c.q. return probability) is no
longer treated as a special case. The measure uses the notion of mass centre defined
below.
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Definition 20. Let π be a probability vector of dimension n, let r be a real number
greater than zero. The mass centre of order r of π is defined as

ctrrπ =
 n∑
i=1

πir
 1
r−1

(40)

If the subscript is omitted, it is understood that the mass centre is of order 2. �

Given a probability vector π , the number ctrr (π) separates the transition probabilities
which grow under Γr from those which shrink under Γr . If r < 1 then those entries
smaller (larger) than ctrr (π) grow (shrink), and vice versa if r > 1 then those entries
smaller (larger) than ctrr (π) shrink (grow). A straightforward calculation confirms these
statements.

Lemma 18. The mass centre of order r is an increasing function in r for all stochastic
vectors π . It is monotone increasing for all non-homogeneous vectors π and constant for
all homogeneous vectors π .

Proof. The derivative of ctrr (π) equals ctrr (π)fπ(r)gπ(r) where

fπ(r) = −
(∑
i
πir

)
ln
(∑
i
πir

)+ (r − 1)
∑
i
πir lnπi

gπ(r) = 1/
(∑
i
πir

)(
r − 1

)2

The sign of d/dr ctrr (π) depends on fπ(r) only. Jensen’s inequality states that∑
i
wixi lnxi −

(∑
i
wixi

)
ln
(∑
i
wixi

) ≥ 0

where
∑
i wi = 1 and the xi are all positive. This inequality is strict unless all the xi are

equal. A proof is given in [18], page 17. Alternatively, this inequality follows easily from
letting ε approach zero in the inequality∑

i
wixi1+ε −

(∑
i
wixi

)1+ε ≥ 0

The latter inequality follows from the convexity of the mapping x → xγ , γ ≥ 1. Assume
without loss of generality that all the πi are positive (simply by pruning all zero entries
of π and rescaling its dimension). Substituting wi = πi and xi = πir−1 yields∑

i
πiπir−1 lnπir−1 − (∑

i
πiπir−1) ln

(∑
i
πiπir−1) ≥ 0

which is equivalent to saying that fπ(r) ≥ 0, with equality iff π is homogeneous. This
proves the lemma. �

The behaviour of ctrr (π) for the limit cases is easily described.
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Lemma 19. Let π be a probability vector of dimension n, and suppose that it has k positive
entries and n− k entries equal to zero. By convention, define 00 to be equal to one.

lim
r↓0

ctrr (π) = 1/k(41)

lim
r→1

ctrr (π) =
∏
i
πiπi(42)

lim
r→∞ ctrr (π) =max

i
πi(43)

Proof. The first and last identities are elementary. The second follows from the deriva-
tion given below. [∑

i
πi1+ε

]1/ε
=
[∑
i
πieε lnπi

]1/ε

=
[∑
i
πi
(
1+ ε lnπi +O(ε2)

)]1/ε

= (
1+ ε

∑
i
πi lnπi +O(ε2)

)1/ε

→ e
∑
πi lnπi (ε→ 0)

=
∏
i
πiπi

�

Lemma 20. Extend the definition of ctrr to IR≥0
n\{0n}. Let u and v be nonnegative vectors

of the same dimension n having the same weight, that is,
∑
ui =

∑
vi. Let r be greater

than zero and not equal to one. If u is majorized by v then ctrr (u) ≤ ctrr (v). This
inequality is strict if u is not a permutation of v .

Proof. When the implication u ≺ v =⇒ ctrr (u) ≤ ctrr (v) holds for all u,v ∈ IR≥0
n,

this is known as the property of Schur convexity of the function ctrr on the set IR≥0
n.

A sufficient condition for Schur convexity of a continuously differentiable function φ
defined on In, where I is an open interval in IR, is that φ is symmetric and that the
expression

(xi − xj)
[∂φ(x)
∂xi

− ∂φ(x)
∂xj

]
is nonnegative for all x ∈ In ([117], page 57). Setting φ to ctrr expands the above to

r
r−1(xi − xj)(xir−1 − xjr−1)

(∑
xir

) 1
r−1−1

Indeed, this expression is nonnegative for all x ∈ In, where I is chosen as the inter-
val (0,∞). A limiting argument now establishes the first statement in the lemma. A
sufficient condition for strictness of the majorization is that whenever (forφ symmetric)

∂φ(X)
∂xi

= ∂φ(X)
∂xj

(44)
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for given X ∈ In, one must have

φ(i,i)(X)+φ(j,j)(X)−φ(i,j)(X)−φ(j,i)(X) > 0(45)

where φ(i,j)(x) denotes the partial derivative ∂φ(x)/∂xi∂xj . This condition is given
in [117], pages 56–57. Equation (44) is satisfied only if xi = xj . Using this equality and
the identities

∂ctrr (x)
∂xi∂xj

= r2

r−1 (
1
r−1−1)xir−1xjr−1

[∑
xir

] 1
r−1−2

∂ctrr (x)
∂xi∂xi

= r2

r−1 (
1
r−1−1)xir−1xir−1

[∑
xir

] 1
r−1−2

+ rxir−2
[∑

xir
] 1
r−1−1

validates Inequality (45). This proves the second statement for all u,v ∈ IR>0
n, and its

general form (for u,v ∈ IR≥0
n) follows again from a limiting argument. �

The Schur convexity of ctrr implies that ctrr is a measure for the deviation from ho-
mogeneity of a nonnegative vector. The inverse of the mass centre of order r (r ≥ 2)
applied to stochastic vectors has an interpretation as the number of nonzero entries in
a weighted sense. This statement is justified by Definition 21 and Theorem 17.

Definition 21. Let u be a nonnegative vector, and let π be the scalar multiple of u such
that π is stochastic. Let P be a subset of {1, . . . , n}, let Pc denote its complement in this
same set. For r ≥ 2 the weighted coverage measure of order r for P and u is defined to
be

Covr (P,u) = 1−
|P| − 1

ctrr (π)
(∑

i∈P πi −
∑
i∈Pc πi

)
n

(weighted)(46)

If the subscript is omitted, it is understood that the measure is of order 2. �

The interpretation of the measure is as follows. The quantity 1/ctrr (π) can be viewed as
the size of the ‘ideal’ clustering for the vectors u and π . This is certainly true if u is ho-
mogeneous. If the actual clustering equals the ideal clustering of u (picking out precisely
all positive elements), then the numerator in the fraction cancels, and the measure yields
the perfect score one. If the vector u is not homogeneous, then it is impossible for any
cluster to yield this perfect score. This makes sense if e.g. the vectors a = (100,0,0),
b = (98,1,1), c = (58,21,21), and d = (50,25,25) are considered. The cluster (rep-
resented by a characteristic vector) (1,0,0) should (and does) have a coverage measure
equal to one for a, because it perfectly captures all of the mass of a. It does not perfectly
capture all of the mass of b, but the clustering (1,1,1) for b is inefficient in the sense that
the cluster uses two positions accounting for two percent of the mass, and one position
accounting for ninety-eight percent of the mass. The performance coefficients (of or-
der 2) of the respective clusterings (1,1,1) and (1,0,0) for the vectors a, b, c, and d are
respectively (0.333,1.000), (0.347,0.999), (0.785,0.792), and (0.889,0.667). The ‘max’
coefficients of order r = ∞ are respectively (0.333,1.000), (0.340,0.993), (0.575,0.759),
and (0.667,0.667). The coefficient of order 2 tends to be more rewarding if all mass is
covered; the max coefficient tends to be more rewarding if relatively small elements are
not covered.
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The weighted coverage measure Covr (P,u) has the property that it lies between 0 and 1
for all u and P iff r ≥ 2.

Theorem 17. Let π and P be as in Definition 21. Let Covr (P,π) denote the weighted
coverage measure (r ≥ 2). Then

0 ≤ Covr (P,π) ≤ 1(47)

with equality in the second inequality if and only if the set of nonzero positions of π
coincides with P and the nonzero entries are homogeneously distributed.

For r < 2 there exist vectors π and clusterings P such that Covr (P,π) > 1.

Proof. For the first part of the theorem only one inequality needs to be proven, since
replacement of P with Pc interchanges the inequalities. It is easy to see that Covr (P,π)
+ Covr (Pc,π) = 1, so that the coverage measure Covr (P,π) is equal to zero iff the
nonzero entries are homogeneously distributed and P covers all the zero entries of π .

Using the identity
∑
i∈P πi = 1−∑i∈Pc πi leaves the inequality 2

∑
i∈P πi ≤ ctrr (π)|P|+1

to be proven. This inequality is proven for the special case that r = 2; the case r > 2
then follows from the monotonicity of ctrr (π) in r .

The inequality 2x ≤ x2 + 1 (valid for x ∈ [0,1]) and the inequality 2ab ≤ a2 + b2 (valid
for all real a and b) validate the following derivation.

2
∑
i∈P
πi ≤

∑
i∈P
πi

2

+ 1

=
∑
i∈P
πi2 +

 ∑
i,j∈P,i<j

2πiπj

 + 1

≤
∑
i∈P
πi2 +

 ∑
i,j∈P,i<j

πi2 +πj2

 + 1

= ctr(π)+ (|P|−1
)
ctr(π)+ 1

The second part of the theorem follows from an explicit construction. Let ε be an arbi-
trarily small (fixed) positive number, and set r = 2− ε. Let a be a small positive number,
let π be the two-dimensional vector (1 − a,a), and let P be the cluster {1}. It is shown
that for a small enough the inequality 2

∑
i∈P πi ≤ ctrr (π)|P| + 1 is invalidated. First

rewrite this inequality in terms of the chosen parameters as

1− 2a ≤ [(1− a)2−ε + a2−ε] 1
1−ε
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Estimate the right-hand side (which equals ctrr (π)) as follows.[
(1− a)2−ε + a2−ε] 1

1−ε = [
1− (2a− εa+O(a2)

)+ a2−ε]1+ε+O(ε2)

= [
1− (2a− εa+O(a2−ε)

)]1+ε+O(ε2)

= 1− (2a− εa+O(a2−ε)
)(

1+ ε+O(ε2)
)+O(a2)

= 1− 2a+ εa− 2εa+O(ε2a)+O(a2−ε)

= 1− 2a− εa+O(ε2a)+O(a2−ε)

It follows that the inequality 2
∑
i∈P πi ≤ ctrr (π)|P| + 1 will fail to be true for the cho-

sen parameters if a is chosen sufficiently small (much smaller than ε). Setting ε = 0.1
and a = 0.01 yields that ctrr (π) is approximately equal to 0.9792, whereas 1 − 2a
equals 0.98. �

Combining the modifications from Definitions 19 and 21 yields the following perfor-
mance criterion for clusterings of weighted graphs.

Definition 22. Let r ≥ 2 be real, let u be a nonnegative vector of dimension n, and let π
be the scalar multiple of u such that π is stochastic. Denote the set of indices i with ui
nonzero by S. Let P be a subset of {1, . . . , n}, let Pc denote its complement in this same
set. The weighted coverage measure of order r for P and u is defined as

Covr (P,u) = 1−
|P| − 1

ctrr (π)
(∑

i∈P πi −
∑
i∈Pc πi

)
|P ∪ S| (weighted, scaled)(48)

If the subscript is omitted, it is understood that the measure is of order 2. Next, let G be
a graph with associated matrix M , let P be a partition of {1, . . . , n}, and let Pu be the
set in P containing u, u ∈ {1, . . . , n}. The weighted performance measure Perfr (G,P)
is obtained by averaging the summed coverage measures Covr (Pu,u) for all columns u
of M . �

Both coverage and performance lie between 0 and 1. This is easily seen; if v is the
vector u with those zero entries pruned which are not in S (leaving precisely the en-
tries corresponding with P ∪ S) then the coverage of u according to Definition 22 is the
coverage of v according to Definition 21.

9.3 A distance on the space of partitions

The following distance defined on the space of partitions of a given set is used in judg-
ing the continuity properties of clusterings generated by the MCL algorithm at different
levels of granularity, and for measuring the distance between MCL clusterings and clus-
terings of randomly generated test graphs with a priori known density characteristics.
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Definition 23. Let S be the set {1, . . . , n}. Let A and B be arbitrary partitions of S. The
projection number pA(B) ofA onto B is defined in terms of the meet ofA and B, that is,
the collection of subsets a∩ b with a ∈A and b ∈ B.

pA(B) =
∑
a∈A

max
c∈A∩B

|a∩ c|(49)

The distance d between A and B is defined as

d(A,B) = 2n− pA(B)− pB(A)(50)

It will customarily be written as the pair of nonnegative integers (n−pA(B),n−pB(A)),
which is equal to the pair (d(A,A∩B), d(B,A∩B)) (see below).

�

Example. Let n = 12, let A and B be the respective partitions {{1,2,3,4}, {5,6,7},
{8,9,10,11,12}} and {{2,4,6,8,10}, {3,9,12}, {1,5,7}, {11}}, which have meet {{1},
{2,4}, {3}, {5,7}, {6}, {8,10}, {9,12}, {11}}. Then pA(B) equals 2 + 2 + 2 and pB(A)
equals 2+ 2+ 2+ 1, the distance d(A,B) equals 24− 6− 7 = 11 and is presented as the
pair (6,5).

It is useful to present the distance as a pair, because if either of the pair elements is zero,
this implies that the corresponding partition is a subpartition of the other. This is easy
to verify, and expressed in the following identities which are valid for all A and B.

pA(A∩B) = pA(B)
pA∩B(A) = n

d(A,B) = d(A,A∩B)+ d(B,A∩B)
More generally, a small projection number pA(B) implies that A is close to being a
subpartition of B. This is intuitively clear, and it is formally expressed in the following
theorem, by identifying d(A,B) with the weight of a shortest path in a suitable graph.

Theorem 18. The distance defined in Definition 23 satisfies the axioms for a metric.

Proof. Clearly it is only the triangle inequality that is of concern. The proof follows
by showing that the distance corresponds to the shortest distance between A and B in
a particular undirected weighted graph constructed on the set of all partitions of the
set {1, . . . , n}. In this graph two partitions are connected via an edge iff one can be con-
structed from the other by joining two of its sets (equivalently the other is constructed
from the first by splitting a set into two). The weight of the edge equals the size of
the smallest of the two sets. So the claim is that d(A,B) is the length of a shortest
path (in terms of total weight) between A and B. Denote a split of a set UV into two
parts U and V by (UV)↘(U|V), denote a join of two parts U and V by (U|V)↗(UV).
Denote a path between A and B by a sequence of splits and joins. Now it is easy to verify
that d(A,B) is the cost of a path consisting of successive down arrows ()↘() starting
fromA all the way down to the meetA∩B, followed by a sequence of up arrows ()↗()
up to B, and that there is no similar down/up path (with only one reversal in the orien-
tation of the arrows) of lower weight. The crux is now that any other path through the
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graph can be converted to a one-reversal down/up path without gaining weight. To this
end, it is only necessary to convert an up/down arrow pair to a down/up arrow sequence
without gaining weight. Repeated application of this manoeuvre yields the desired re-
sult. Two cases must be distinguished. First consider the sequence (TU|VW) ↗ (TUVW)
↘ (TV |UW), with associated cost

min(|T |+|U|, |V |+|W |)+min(|T |+|V |, |U|+|W |)
It can be converted into the sequence

(TU|VW) ↘ (T |U|VW) ↘ (T |U|V |W) ↗ (TV |U|W) ↗ (TV |UW)
with associated cost

min(|T |, |U|)+min(|V |, |W |)+min(|T |, |V |)+min(|U|, |W |)
The following inequalities yield that the latter cost does not exceed the former.

min(|T |, |U|)+min(|V |, |W |) ≤ min(|T |+|V |, |U|+|W |)
min(|T |, |V |)+min(|U|, |W |) ≤ min(|T |+|U|, |V |+|W |)

Second, consider the sequence (U|V |XY)↗(UV |XY)↘(UV |X|Y) with associated
cost min(|U|, |V |) + min(|X|, |Y |). It can be converted to the sequence (U|V |XY)↘
(U|V |X|Y)↗(UV |X|Y), which has identical cost as the former sequence. The theorem
follows. �



10

Clustering characteristics of the
MCL algorithm

Before considering issues of complexity, scaling, and implementation in the next chapter,
a series of examples is given illustrating various characteristics of the MCL algorithm.
The performance criteria and the distance between partitions derived in the previous
chapter will not be used for the small scale examples in this chapter, instead they are
applied to randomly generated test graphs in Chapter 12. The first four sections in this
chapter each give a short empirical account of respectively the genesis of attractor sys-
tems, the phenomenon of overlap, the effect of adding loops, and the effect of (varying)
inflation on cluster granularity. In Section 10.5 the MCL algorithm is applied to vari-
ous small torus graphs to see whether it is able to recognize a particular characteristic
of their structure. In Section 10.6 it is shown that the MCL algorithm is in general not
suited for detecting cluster structure if the diameter of the natural clusters is large. The
examples used are neighbourhood graphs derived from two dimensional data. A com-
mon approach towards detection of clusters in neighbourhood graphs is by finding the
borders that separate them. In Section 10.7 it is shown that early stages of the MCL pro-
cess yield information that can be used to this end.

In order to describe the results of MCL–runs on various test-graphs for various paramet-
rizations, the legend for MCL parametrizations is introduced. The experiments allowed
input rows e(i), r(i) which have very simple structure. The row e(i) simply consists of
two’s only. The row r(i) is constant on a tail of infinite length, and may assume another
constant on a prefix of length l, where l can be specified as well. This amounts to three
parameters related to the input rows specifying MCL process parameters. The fourth
parameter indicates whether loops are added to an input graph G. If this parameter
assumes a value c ∈ IR≥0, the program takes the graph G + cI as actual input. The
parameter labels, their meaning, and default setting are found in Table 1. The length l
of the initial prefix is indicated by ‘l’, the constant value assumed by r(i) on the initial
prefix by ‘r’, the constant value on the infinite postfix by ‘R’, and the loop weight by ‘a’
(stemming from auto-nearness). The main use of introducing a default setting is that in
many examples the simplest possible parametrization is chosen, where the initial prefix
length is equal to zero. The default setting corresponds with an MCL process for which
e(i)=c 2 and r(i)=c 2 and no loops added.

111
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Parameter Meaning Default setting

a Loop weight 0
r Initial inflation constant 2
l Initial prefix length 0
R Main inflation constant 2

Table 1. MCL implementation legend.

10.1 Attractors

In practice, for input graphs constructed from real applications for the purpose of clus-
tering (and thus with no strong symmetries present), the equivalence classes E1, . . . , Ed
(see Definition 8) tend to be singleton sets. In all situations observed so far where this is
not the case, see e.g. the limit matrix in Figure 13 on page 53, the elements in an equiv-
alence class of cardinality greater than one are the orbit of a graph automorphism. For
the graph G3 in Figure 10 on page 45, the nodes 8 and 10 share exactly the same set of
neighbours, and are for that reason indistinguishable with regard to structural proper-
ties of the graph. The mapping on the node set of G3 which only interchanges the nodes
8 and 10 is an automorphism of the graph G3. As a second example, consider the graph
G1 in Figure 7 on page 43. An MCL run with parametrization a = 1 results in 4 clusters,
each of which is a triangle in the graph, and where each node is an attractor. Printing
attractors in boldface, this is the clustering {{1,2,3}, {4,5,6}, {7,8,9}, {10,11,12}}.
The cluster {1,2,3}, and likewise the other clusters, is the orbit of either of its elements
under rotation of G1 around the symmetry axis orthogonal to the plane spanned by 1,2,
and 3.

Generally, attractors are located in local centra of density, which is best illustrated by
large graphs with clear islands of cohesion. If a graph fits the picture, so to speak, of
a ‘gradient of density’, the attractors are found in the thickest parts of the graph. This
effect is to some extent illustrated by the graph in Figure 19. For this graph, it interferes
however with another phenomenon that occurs when a graph possesses borders. In
that case, the return probabilities of nodes which lie just before those borders, profit
immediately and maximally after one expansion step from the ‘dead end’ characteristic
of the border. The border of the graph in Figure 19 is the outline of the grid. This
explains why all of the attractors in Figure 20 are nodes lying at distance one from the
outline of the grid.

10.2 Overlap

The phenomenon of overlap in the setting of undirected graphs has only been observed
so far for input graphs with specific symmetry properties. For these cases, if the MCL al-
gorithm produces two clusters C1, C2 with nonempty intersection, there exists an auto-
morphism which transforms C1 into C2 while leaving the intersection invariant. An ex-
ample is the line graph on 7 nodes the associated matrix of which is found in Figure 14.
The automorphism maps i onto 7 − i, i = 1, . . . ,7, which leaves the intersection {4}
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Figure 18. Graph G4. Figure 19. Graph G5.

invariant. Existence of such an automorphism means that the overlapping part forms
a subset of the graph from which the graph looks the same in different directions. If
those different directions correspond also with different islands of cohesion, it is rather
nice if the overlapping part is not arbitrarily divided among the resulting clusters. An-
other example of this phenomenon can be found in Figure 20. Overlap occurs at several
levels of granularity, and it always corresponds with a symmetry of the graph. For undi-
rected graphs, the amount of possible overlap tends to be proportional to the amount
of symmetry present. Naturally, any amount of overlap can be constructed by taking
appropriate directed input graphs.

Small perturbations in the input graph generally do not affect the output clustering pro-
duced by the MCL algorithm. An exception to this is the case where overlap occurs, as
discussed in Section 6.3. If the symmetry corresponding with the overlap is perturbed,
the overlap disappears.

10.3 The effect of adding loops

For small graphs and graphs with bipartite characteristics such as rectangular grids,
adding loops is a beneficial manoeuvre. The reason for this is the same as it was for
k-path clustering. The possible dependence of the transition probabilities on the parity
of the simple path lengths in the graph is removed. More generally, adding loops of
weight c to a graph has the effect of adding c to all the eigenvalues in its spectrum, and
negative eigenvalues are known to correspond with oscillatory behaviour of the associ-
ated matrix. The effect of adding loops on the output clusterings of the MCL algorithm
is that connectedness (with respect to the input graph) of the clusters in the output clus-
tering is promoted, and that the granularity of the output clustering is increased. The
latter is reflected in the fact that adding loops increases the number of endclasses of the
associated DAG of a dpsd matrix.
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10.4 The effect of inflation on cluster granularity

There is a clear correlation between the inflation parameter and the granularity of the
resulting output. The higher the parameter r , the more the inflation operator Γr demotes
flow along long path distances in the input graph. This is illustrated for the graph G5

in Figure 19. Figure 20 gives the result of six MCL runs for G5 in which the inflation
parameter is varied from 1.4 to 2.5, while all other parameters are kept the same (i.e.
a = 1 E = 2). Note that the corresponding overlapping clusterings are strongly related
to each other. The set of all clusterings excluding the one corresponding with inflation
parameter R = 1.4 is a set of nested overlapping clusterings. This is very satisfactory,
as one expects clusters at different levels of granularity to be related to each other. The
clusterings at the first three levels R = x, x ∈ {1.4,1.5,1.7}, have good visual appeal. It
holds for all clusterings that the sizes of the respective clusters are evenly distributed,
except perhaps for the clustering with parameter R = 2.0.

The second example in which the inflation parameter is varied while other parameters
are kept the same concerns the graph G4 in Figure 18. It is derived from the graph G1 in
Figure 7 by replacing each of the 12 nodes in G1 by a triangle. Note that G4 is a simple
graph: The length of the edges in the picture do not correspond with edge weights.
Now G4 clearly allows two extreme clusterings P1 = {singletons(V)} and P4 = {V}, a
clustering P2 in which each of the newly formed triangles forms a cluster by itself, and a
clustering P3 with 4 clusters in which each cluster consists of the 9 nodes corresponding

Parametrization
l r R Clustering

0 – 1.0− 1.2 P4

0 – 1.3− 1.4 P3

0 – 1.5− 3.0 P2

0 – 3.0−∞ P1

1 1 1.0− 1.3 P4

1 1 1.4− 1.7 P3

1 1 1.8− 5.3 P2

1 1 5.4−∞ P1

2 1 1.0− 1.4 P4

2 1 1.5− 2.4 P3

2 1 2.5− 6.8 P2

2 1 6.9−∞ P1

a = 1 set everywhere

Table 2. MCL runs for the graph G4 in Fig-
ure 18. The clusterings P1, . . . ,P4 are de-
fined in the text above.

x l r R

5 2 1.2 2.1− 3.2
2 1.0 2.1− 4.0
2 0.8 2.1− 5.3

6 2 1.2 2.1− 2.4
2 1.0 2.1− 2.8
2 0.8 2.1− 3.3

7 3 1.2 2.1− 2.7
3 1.0 2.3− 3.9
3 0.8 2.9− 6.4

8 3 1.2 2.1− 2.3
3 1.0 2.3− 2.9
3 0.8 2.9− 4.3

9 3 1.2 2.1
3 1.0 2.3− 2.5
3 0.8 2.9− 3.3

a = 1 set everywhere

Table 3. Parametrizations for which the
MCL algorithm finds 10 clusters of size
x each for the input graph TORUS(10, x),
x = 5, . . . ,9.
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-a 1 -R 1.4 -a 1 -R 1.5

-a 1 -R 1.7 -a 1 -R 2.0

-a 1 -R 2.1 -a 1 -R 2.5

Figure 20. Clusterings resulting from the MCL algorithm for the graph in Figure 19. Dotted
nodes are attractors.

with 3 newly formed triangles. Clustering with parameters a = 1 E = 2 R = x, where x
varies, yields the following. Choosing x ∈ [1.0,1.2] results in the top extreme clustering
P4, choosing x ∈ [1.3,1.4] in the clustering P3, choosing x ∈ [1.4,3.0] in the clustering
P2, and choosing x ∈ [3.1,∞] results in the bottom extreme clustering P1. The range
of x for which the clustering P4 results is small. This has to do with the fact that
the clustering P4 is rather coarse. The dependencies associated with P4 correspond
with longer distances in the graph G4 than the dependencies associated with P3. If the
inflation parameter increases, the latter dependencies (in the form of random walks)
soon profit much more from the inflation step than the former dependencies. By letting
expansion continue a while before starting inflation, this can be remedied. Table 2 shows
several parameter settings and the resulting clusterings.

The clusterings shown for the torus graphs, the tetraeder-shaped graphs in Figures 7
and 18, and the grid in Figure 19 illustrate that the MCL algorithm ‘recognizes’ structure
even if the node degrees in the input graph are homogeneously distributed and the
connectivity of the graph is high. The inflation parameter clearly is the main factor
influencing the granularity of the output clusterings. The output clustering changes
at specific values of the inflation parameter constant (either the prefix or the postfix
value), and stays the same for the intervals in between. By prolonging expansion, coarser
clusterings can be found.
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10.5 Flow on torus graphs

The following examples are rectangular torus-graphs. A k-dimensional rectangular torus
graph generalizes a ring graph in k dimensions. It is most conveniently defined as a sum
of ring graphs, defined on the Cartesian product of the respective node sets.

Definition 24. Let (Gi = (Vi,wi)), i = 1, . . . , n be an n-tuple of simple graphs. The sum
graph S of G1, . . . , Gn is defined on the Cartesian product V1 × . . . × Vn. Two vertices
(x1, . . . , xn) and (y1, . . . , yn) are connected in S if exactly one of the pairs (xi, yi) is
connected in Gi, and xi = yi for the remaining n− 1 pairs.

Definition 25. The 1-dimensional torus graph or ring graph of cardinality t is the sim-
ple graph defined on the integers modulo t: 0, . . . , t− 1, where there is an edge between i
and j iff i ≡ j + 1( mod t) or j ≡ i+ 1( mod t).

A graph is called a k-dimensional torus graph if it is the sum graph of k ring graphs. It can
be identified with a k-tuple (t1, . . . , tk), where ti is the cardinality of the node set of the ith
ring graph. The torus graph corresponding with this k-tuple is denoted TORUS(t1, . . . , tk).

�

Here I will use only 2- and 3-dimensional simple torus graphs. A 2-dimensional torus
graph TORUS(k, l) can be thought of as a rectangular grid of width k and depth l, where
nodes lying opposite on parallel borders are connected. In Section 6.3 it appeared that
periodic MCL limits exist which have the same automorphism group as ring graphs. A
two dimensional torus graph G = TORUS(k, l) where k = l has the same homogeneity
properties as ring graphs. It is interesting to see what happens if k > l. Consider a node
pair (u1, u2) lying on a ring of length l in G at a (shortest path) distance t ≤ l from each
other, and a node pair (v1, v2) in G, also lying at distance t from each other, but not
lying on such a ring. The transition probability associated with going in l steps from
u1 to u2 is larger than the transition probability associated with going in l steps from
v1 to v2, because u1 can reach u2 in two ways along the ring on which they both lie,
while this is not true for v1 and v2. Is it possible to find an MCL process in which this
effect is boosted such that a clustering of G in k clusters of size l each results? This
is indeed the case, and it requires the usage of input rows r(i) which are not constant
everywhere. If l is very close to k, it is furthermore beneficial to use an initial inflation
parameter which is close to or smaller than 1. Without this, the return probability of
each node grows too large before paths of length l start to have influence, which is after
dlog2(l)e expansion steps (assuming e(i)=c 2). Table 3 shows parameter settings for which
the MCL algorithm output divides the graphs TORUS(10, x) in 10 clusters of cardinality
x each, x = 5, . . . ,9. These are of course not the only parametrizations achieving this,
but among the parametrizations found they lead to fast convergence of the MCL process.

The last torus example is the 3-dimensional torus graph TORUS(3,4,5). A priori it is to
be expected that the non-extreme clusterings which the MCL algorithm can possibly pro-
duce are the clustering P2 corresponding with 20 subgraphs isomorphic to TORUS(3)
and the clustering P3 corresponding with 5 subgraphs isomorphic to TORUS(3,4). De-
note the top and bottom extreme clusterings by P1 = {singletons(V)} and P4 = {V} re-
spectively. The table below gives four parameter ranges yielding the four clusterings Pi.
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Parametrization
l r R Clustering

2 1.2 1.0− 2.3 P4

2 1.2 2.4− 3.3 P3

2 1.2 3.4− 6.4 P2

2 1.2 6.5−∞ P1

The torus examples illustrate the strong separating power of the MCL process. This is
mainly interesting for a better understanding of the process, and probably not of much
help in using the algorithm. The rewarding aspect of the torus examples is that abstract
reasoning about the process applied to extreme cases is confirmed by experiments. The
further experiments described below will exhibit a characteristic of the MCL algorithm
that may be considered a weakness. It concerns the formation of clusters in graphs
consisting of weakly connected grids, where certain clusters connect parts of different
grids. The phenomenon is rather surprising at first, but it can be be understood in
abstract terms. It is indicative for the fact that there are severe problems involved in
applying graph cluster methods to neighbourhood graphs derived from vector data.

10.6 Graph clustering and the vector model

In the upper left of Figure 21 a rectangular assembly of points in the
plane is shown. A graph is defined on the black spots using the neigh-
bourhood relation depicted to the right of this text (i.e. nodes correspond
with black spots and there is an edge between two nodes if they are at
most

√
5 units away). The weight of an edge is inversely proportional to

the distance between the coordinates of its incident nodes. This is not
essential for what follows, nor is the particular neighbourhood structure used. In Fig-
ure 21 three clusterings are depicted, corresponding with the simple parametrizations
R = 1.9, R = 2.3, and R = 2.7. The MCL process applied to grid-like graphs such as these
has the property that columns (equivalently, probability distributions of a node) begin to
convergence towards a homogeneous state in the corners and borders first. While this
happens, the converging parts of the distributions begin to assume the characteristics
of a border themselves, as flow from the border region towards the centre is demoted.
This explains the neat division of the graph into blocked patterns.

If the inflation parameter is chosen sufficiently low, the graph will be clustered into a
single cluster. This requires considerable time, as the diameter of the graph is ten. Di-
agonally opposite corners build up distinctly different probability distributions, and it
requires several expansion steps at low inflation parameter to let them equalize. Though
it is possible (using the parametrization R = 1.3) in this simple setting, matters become
more complicated if the graph is made part of a larger constellation. Four such constella-
tions are depicted in Figure 22, where the one in the upper left is the same as before. The
graphs on the grids are derived using the same neighbourhood structure as before, and
Figure 22 shows the result of applying the MCL algorithm with parametrization R = 1.3.
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Figure 21. Three clusterings of the 18×12-node graph in the upper left for increasing inflation
values. The initial edges are defined by the neighbourhood structure depicted on page 117.

The upper right clustering is remarkable in that the two small satellite subgraphs form
clusters together with regions of the large rectangle. This is explained by the effect that
the small subgraphs ‘inflate’ the probability distributions of the nodes of the rectangle
lying on the opposing border (i.e. cause them to be less homogeneous). Random walks
departing from these border nodes crossing over to the satellite subgraphs have a rela-
tively small probability initially, but due to the low inflation parameter, and the fact that
a satellite subgraph has a great absorbing quality, these probabilities win out easily in
the end. This is further illustrated by Figure 23, in which all four constellations are again
clustered for parametrization R = 1.5. The crossing characteristics of the upper right
constellation are now much less dramatic, but still present.

The clustering of the lower left constellation in Figure 22 is remarkable in that the natural
bipartition of the large rectangle is rather along the south/north axis than the along the
east/west axis. If the rectangle is clustered without satellite systems, then this is the
only bipartition which can possibly result, which is explained by the fact that flow is
sooner bound along the north/south axis than it is along the east/west axis. This can be
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Figure 22. Graph from Figure 21 with different satellite constellations clustered with constant
inflation equal to 1.3. The initial edges are defined by the neighbourhood structure depicted on
page 117. The upper right clustering exhibits clear border crossing caused by inhomogeneity
differentiation. The lower left clustering induces an unnatural bipartition of the large rectangle.

compared to the clustering of a (k, l) torus graph, k < l, for which an MCL process will
never result in a clustering into k rings of size l.

In the lower right constellation of Figure 22 it is noteworthy that the corner nodes are all
attracted to the clustering corresponding with the neighbouring south or north satellite
rather than the east or west satellite. This is probably caused by the fact that the border
between the ‘s’ and ‘v’ clusters is closer by than the border between the ‘a’ and ‘u’ clus-
ters, so that the distribution of the corner node transition probabilities is steeper along
the south/north axis than it is along the east/west axis. The situation is different for the
constellation in Figure 23, because the convergence of the cluster structure correspond-
ing with the satellite systems took place much sooner than the convergence of the four
large clusters in the rectangle.
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Figure 23. 18×12 Graph with different satellite constellations clustered with constant inflation
equal to 1.5. The clusterings exhibit slight border crossing caused by inhomogeneity differenti-
ation.

The behaviour of the MCL process for the grid-like graphs in this section has two reasons.
The fact that the natural clusters have sizes differing by orders of magnitudes is an
important factor. However, examples exhibiting the same border-crossing behaviour
can be constructed with sets of grids of the same size, simply by tiling them such that
corners are aligned with borders. The most significant factor is the prolonged expansion
at low inflation parameter required in order to equalize the probability distributions
of opposing corners and opposing borders. The main characteristics of the subgraph
corresponding with the large rectangle are that it is rather large (216 nodes) and has
relatively large diameter. The process of equalizing distributions via expansion at low
inflation values is costly in terms of space due to the large number of elements, and it
is costly in terms of time due to the large diameter. The time requirement causes the
process to be sensitive to perturbations in the input graph. This was demonstrated by
adding small extra grids; similar phenomena occur if for example some nodes are given
greater initial return probabilities than other nodes.
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The significance of these observations is that one must be careful in applying the MCL al-
gorithm to neighbourhood graphs derived from vector data, especially if it is known or
unknown whether the diameter of the natural clusters is large. If it is known that this
quantity is not too large, then the MCL algorithm will work well. This is illustrated by the
geometric graph example shown in Chapter 1. The principal cause for the behaviour of
the MCL algorithm — large diameter and dimension of clusters — will affect any graph
clustering algorithm that is grounded on the principles discussed in Chapter 5. The com-
putation of long distance dependencies, be it via random walks, paths, or shortest paths,
will in each case be costly and prone to be sensitive to local fluctuations in density of the
vectors inducing the neighbourhood graph.

The detection of clusters in a grid-like setting may be better served by a procedure such
as border-detection. It is interesting to try and devise such a procedure using flow for-
mulation and the graph cluster paradigm. The following section describes a small exper-
iment in this direction.

10.7 Towards border detection using flow simulation

Clustering in the setting of (graphs derived from) grids has its limitations, as argued in
the previous section. It was seen that clusters which correspond with large regions are
difficult to detect using the graph clustering paradigm. However, the early stages of flow
simulation yield information that can be used to detect the presence of borders between
regions that have for example different shades (grey-levels) or colour. This is first il-
lustrated for a simple example in which the mutual attraction between nodes depends
on the associated Euclidean distance only. The graph shown on the left of Figure 24 is
defined on four neighbouring rectangles, each of size 9 × 6, using the neighbourhood
relationship on page 117. The borders of the four rectangles are thus weakly connected.
The MCL process was applied to this graph with standard parameters, i.e. inflation and
expansion both equal to two. The graph shown on the right of the same figure corre-
sponds with the sixth iterand T of the process. The grey level of a node i is inversely
proportional to the ratio Tii/ci, where ci denotes the mass centre of order 2 of the ith col-
umn of T . Nodes i at the borders of the four rectangles thus have low value Tii/ci, and
nodes lying in the centre have a high value. This is explained by the fact that convergence
begins first at the borders, with border nodes becoming attracted to nodes which are one
step away from the border. The nodes in the centre initially develop rather homogeneous
and stable probability distributions.

Next consider an image in the form of a bitmap with different grey-levels. An example is
given in Figure 25. This image is a bitmap of dimension 284×380, where each pixel may
assume 256 grey-levels. A graph was created from this bitmap with a node for each pixel.
Horizontally, vertically, and diagonally neighbouring nodes (pixels) where connected via
an edge with weight inversely proportional to the difference in grey level between the
pixels. Loops were added such that the return probability of a node equalled the mass
centre of order 2 of the stochastic vector associated with this node.
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Figure 24. Using flow to find borders. The grey level of the nodes on the right hand side is
inversely proportional to the extent to which the nodes attract flow.

A variant of the MCL process was applied to this graph which incorporated aggressive
pruning. That is, after each matrix multiplication, all nodes were allowed to have at most
nine neighbours. The natural choice for this is to pick the nine neighbours with greatest
associated probability (see also Chapter 11). After removal of all but the nine largest
neighbours of a node, the corresponding pruned column is rescaled to have weight one
again. If a pixel is situated in a homogeneous region, then for early stages of the pro-
cess the neighbours with largest associated transition probability will be just the set of
its initial neighbours (including itself), since there is no reason for the symmetry to be
broken. Moreover, the return probability will be the largest value in the column, since
the symmetry leaves no room for any other direction of attraction. On the other hand,
if a pixel is situated near a border or edge in the image, then the distribution of the as-
sociated probability vector will be asymmetric with respect to the initial neighbourhood
constellation. This will cause the emergence of a direction of attraction, just as in the
example in Figure 24. Figure 26 shows the result of interpreting the third iterand of the
resulting process using the same principle as in Figure 24 and using a threshold for the
indicator value Tii/ci.

The resulting image (Figure 26) indeed shows that the indicator value causes homoge-
neous regions to become blank and causes clear borders in the image to reappear as
such. This is a tentative result, as there is information present in the processed image
that hampers further contour detection (i.e. a true symbolic representation of borders),
and there is also information lacking that one would like to be present (i.e. the arcs in
the original image do not fully reappear in the processed image). However, it must be
kept in mind that the chosen approach was extremely simple and naive. This use of the
MCL process may well serve as an intermediate processing step in more sophisticated
approaches. The value of the MCL process in this application is that it offers a generic
modus via which neighbouring and super-neighbouring pixels may influence each other.
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Figure 25. San Giorgio Maggiore in Venice.



124 CLUSTERING CHARACTERISTICS OF THE MCL algorithm

Figure 26. Result of a bordering process based on the MCL process.
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Scaling the MCL algorithm

The complexity of the MCL algorithm, if nothing special is done, is O(N3) where N is
the number of nodes of the input graph. The factor N3 corresponds to the cost of
one matrix multiplication on two matrices of dimension N. The inflation step can be
done in O(N2) time. I will leave the issue aside here of how many steps are required
before the algorithm converges to a doubly idempotent matrix. In practice, this number
lies typically somewhere between 10 and 100, but only a small number of steps (in a
corresponding range of approximately 3 to 10) in the beginning correspond with matrix
iterands that are not extremely sparse. The only way to cut down the complexity of
the algorithm is to keep the matrices sparse. Fortunately, the MCL process is by its
very nature susceptible to such modification. This issue is discussed in the first of
the two sections in this chapter. The last section contains a brief description of the
implementation with which the experiments in this thesis were carried out.

11.1 Complexity and scalability

The limits of an MCL process are in general extremely sparse. All current evidence
suggests that overlap or attractor systems of cardinality greater than one correspond
with certain automorphisms of the input graph (Sections 10.1 and 10.2 in the previous
chapter).

The working of the MCL process with respect to finding cluster structure is mainly based
on two phenomena. First, the disappearance of flow on edges between sparsely con-
nected dense regions, in particular the edges in the input graph. Second, the creation of
new flow within dense regions, corresponding with edges in the limit graph not existing
in the input graph.

Typically, the average number of nonzero elements in a column of a limit matrix is equal
to or very close to one, and the intermediate iterands are sparse in a weighted sense. The
expansion operator causes successive iterands to fill very rapidly, but if natural cluster
structure is present and the cluster diameters are not too large (cf. Section 10.6) then
the inflation operator ensures that the majority of the matrix entries stays very small,
and that for each column the deviation in the size of its entries is large. A small cluster
diameter implies that the equalizing of probability distributions is relatively easy as flow
need not be transferred over long distances before it eventually stabilizes. This fact is
exploited in various proposals for matrix pruning schemes made below.
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Remark. Before introducing these schemes a remark on the justification of pruning is
in place. I will not attempt a numerical or perturbation analysis of pruning. Rather, I will
stick to heuristic reasoning in higher-level terms of cluster structure and random walks
when discussing the viability of pruning, and this reasoning will be put to the test by
experimenting with randomly generated testgraphs in the next chapter.

11.1.1 Pruning schemes. If it is assumed that the probabilities of intermediate random
walks are indeed distributed inhomogeneously per column, then this leads naturally to
the idea that it will do no harm to remove intermediate random walks (i.e. setting matrix
entries to zero) which have very small probability. The interpretation of the process then
enforces obvious constraints on such pruning:

• The magnitude of a transition probability is only relevant in relationship to the
other transition probabilities of the associated tail node. Pruning must be done
locally rather than globally, that is, column-wise.

• Pruning should only remove a small part of the overall weight of a column; the
corresponding entries should ideally have large (downward) deviation from the
column average (for a suitable notion of column average).

• In order to maintain the stochastic interpretation, columns are rescaled after
pruning.

Together these form the the key to an efficient implementation of the MCL algorithm.
Three different pruning schemes have been considered and implemented. Let M be
a sparse column stochastic matrix. Suppose a column c of the square M2 has been
computed with full precision. The three schemes are respectively:

• Exact pruning — the k largest entries of the column are computed. Ties are
broken arbitrarily or are allowed to increase the bound k. This computation
becomes increasingly expensive for larger values of k and increasing deviation
between k and the number of nonzero entries of c.

• Threshold pruning — a threshold value f is computed in terms of the mass
centre ctr(c) of order two of c. All values greater than f are kept, the rest is
discarded. A typical candidate for such a threshold value is of the form a ctr(c)(1
− b[maxi(ci) − ctr(c)]), where 0 < a ≤1 and b is chosen in the range 1 . . .8;
another one is a[ctr(c)]b, where 0 < a ≤ 1 ≤b. The motivation for the first
depends on the fact that if maxi(ci) is close to ctr(c) then the (large) nonzero
entries of the vector c are rather homogeneously distributed.

• A combination of the above, where threshold pruning is applied first in order to
lower the cost of exact pruning. It is either allowed or disallowed for threshold
pruning to leave a number of nonzero entries smaller than k.

If pruning with pruning constant k is incorporated into the algorithm, the complexity is
reduced to O(Nk2) for a single matrix multiplication. This follows from the fact that any
columns of the product of two k-pruned matrices has at most k2 nonzero entries. It is
assumed that pruning can be done in O(t) time for a vector with t nonzero entries. In
the experiments in the next chapter this was ensured by using threshold pruning.
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11.1.2 Factors affecting the viability of pruning. It is intuitively acceptable that prun-
ing eats away the least probable walks, if they have large downward deviation from the
column centre, and if the total number of pruned entries accounts for a relatively small
percentage of the column mass, say somewhere in between 5 and 10 percent. If the dis-
tribution of a column c is rather homogeneous, with many entries approximately equal
to the centre ctr(c), and if pruning removes a sizeable fraction of the distribution, this
will clearly disturb the MCL algorithm, rather than perturb. The examples in the previous
chapter indicate that the latter will be the case if the diameter of the natural clusters is
large. Those examples turned out to vex the the MCL algorithm in a much more fun-
damental way however. In the next chapter I report on experiments using randomly
generated testgraphs in which both the graphs themselves and the natural clusters have
in general small diameter, and on how the algorithm scales when scaling these dimen-
sions.

11.1.3 Convergence in the presence of pruning. The convergence properties in the set-
ting sketched above do not change noticeably, and the resulting clusterings are still very
satisfactory. Clusterings of graphs with up to a thousand nodes resulting from both
normal matrix computation and prune mode with otherwise identical parametrizations
were compared. The respective clusterings sometimes differed slightly (e.g. a node mov-
ing from one cluster to another) and were often identical. The effect of varying the
pruning parameter is investigated quantitatively in the following chapter in terms of
performance criteria.

11.2 MCL implementation

The MCL algorithm was implemented at the CWI by the author. It is part of a library
written in C with extensive support for matrix operations, mapping of matrices onto
clusterings, comparison of clusterings, generation of statistics (e.g. for different pruning
schemes), and facilities for random generation of partitions and cluster test matrices.
Both Jan van der Steen and Annius Groenink have contributed significantly to the matrix
section of the library in terms of rigor and elegance. The library will be made available
under a public license in due course.

At the heart of the library lies the data structure implementing a matrix. A matrix is
represented as an ordered array of vectors, and a vector is represented as an array of in-
dex/value pairs. Each index is unique in the array, and the index/value pairs are ordered
on increasing index. This generic construction is used to represent a nonnegative vector
by its positive entries only. The vector (4.2,0.0,2.7,3.1,0.0,0.0,5.6)T is thus represented
as the array (indexing starts at zero)

[0|4.2][2|2.7][3|3.1][6|5.6]
There is a choice of representing a matrix via its rows or its columns. A column stochas-
tic matrix M is naturally represented via its columns. Assuming that pruning is applied
with pruning constant k, computing the square M2 requires for each column of M2 the
computation of a weighted sum of at most k columns, resulting in a vector which may
have k2 entries. This vector is pruned down to at most k entries via either of the schemes
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given in the previous section. For large k, say larger than 70, it is pertinent that thresh-
old pruning is applied in order to ease the burden of exact pruning. This may lead to a
pruned vector with less than k entries. It is easy to envision a looping process in which
several thresholds are tried in order to obtain an optimum threshold value resulting in a
vector with a number of entries close or even to k, or even a version of threshold pruning
where the pruning regime depends on the weight distribution of the probability vector,
so that nodes with a large homogeneous distribution are allowed to have more than k
nodes. This was not tried for, but the experiments in Chapter 12 indicate that fine-tuning
the pruning regime may result in considerably better performance.



12

Randomly generated test graphs

The MCL algorithm is tested against randomly generated simple graphs for which it is
a priori known that they posses natural cluster structure. The graphs which are used
have small diameter and so do (the subgraphs induced by) their natural clusters. The
first section describes how test graphs are generated and contains a small-scale example
with a graph on 160 nodes. The second section gives an account of two experiments.
In the first experiment the MCL algorithm was applied to three graphs on 10000 nodes
with identical cluster structure but with different density characteristics. Each graph was
input to several MCL runs. In each run a different pruning constant k was applied while
holding other MCL parameters fixed. The results indicate that pruning works well, which
is explained by the small diameter of the natural clusters. In the second experiment eight
graphs were generated (again on 10000 nodes) having the same density characteristics
but different granularity characteristics. They were clustered using the exact same MCL
parametrization for each graph. The resulting clusterings are generally quite good, indi-
cating that the MCL algorithm can handle graphs with large natural clusters, and that it
depends mainly on the diameter and the density characteristics of the natural clusters
which parametrizations give the best result. The experiments indicate that fine-tuning
the pruning regime considerably helps the performance of the MCL algorithm.

12.1 The generating model

For the purpose of testing the MCL algorithm, simple graphs are generated via a simple
modification of the generic random graph model, in which each edge is realized with
some fixed probability p. In the generic random graph model, the parameters are the
dimension of the graph n and the probability p.

Definition 26. A random cluster/graph generator G (Fraktur G) is a tuple (n,p, q,O),
where n is a positive integer, p and q are probabilities satisfying 1 ≥ p ≥ q ≥ 0, and O
(Fraktur O) is a generator producing partitions of the set {1, . . . , n}.

The generator G generates a cluster test graph by obtaining a partition P from O, and
subsequently realizing an edge (k, l) with respectively probability p if k and l are in
the same partition element of P, and probability q if k and l are in different partition
elements. �

The partition generator has not been further specified in this definition, as it is conve-
nient to be able to plug in different types of generators, which differ with respect to the
granularity and homogeneity (i.e. variation in the subset sizes) of the partitions gener-
ated.

129



130 RANDOMLY GENERATED TEST GRAPHS

The symmetric nature of the way in which edges are locally realized within partition
elements implies that the corresponding subgraphs are unlikely to have long chains. A
simple way of seeing this is by envisioning the corresponding incidence submatrix. For
any permutation of this matrix, the nonzero entries are expected to be homogeneously
distributed, whereas a long chain corresponds with a (part of the) submatrix in which all
elements are close to the diagonal. The theory of randomly generated graphs confirms
that the expected diameter of the connected components is small [24, 25]. The upshot
is that the generated cluster structure is spherical rather than chain-like.

The discussion in this chapter will mostly follow heuristic arguments. Whereas the
simple setup in Definition 26 should allow mathematical reasoning by probabilistic ar-
guments about the generated graphs, this is entirely beyond the scope of this thesis.
The mathematics behind random graph-theory is rather involved, and constitutes a
large branch of research in itself (for results on the diameter of random graphs, con-
sult [24, 25, 136] and references therein). I do claim however that the random clus-
ter/graph generator is a canonical model for generating cluster test graphs. Consider a
graph G generated by a (n,p, q,O) generator for a partition P from O. The graph can
be viewed as a random graph generated with parameters (n, q), after which extra edges
are added solely in the subgraphs corresponding with elements of P. Assuming that p is
much larger than q, it follows that P must approximately be the best clustering of G; it
is simply extremely unlikely that any other block diagonalization achieves the same high
density p of nonzero entries within the blocks, and the low density q of nonzero entries
outside the blocks.

The tests with the MCL algorithm were carried out with the randomized parametrized
generator defined below.

Definition 27. A grid partition generator P (Fraktur P ) is a pair (n, g), where n and g
are positive integers with g ≤ n. Let r be the remainder of n modulo g, and let k be the
integer part of n/g, so that n = kg + r .

The generator P generates a partition of {1, . . . , n} by generating k random permuta-
tions of the interval {1, . . . , g}, and taking as partition sizes the lengths of the cycles. The
partition sizes derived from the ith permutation, i = 1, . . . , k, are mapped onto a consec-
utive set of elements in the set {(i − 1)g + 1, . . . , ig}. The last r entries are partitioned
similarly by a random permutation of the set {1, . . . , r}. �

Note. Throughout this chapter, the word ‘partition’ will be used to refer to the partition
used in generating a test graph. The word ‘clustering’ is used to refer to a clustering
generated by the MCL algorithm. A cluster is an element of the clustering, i.e. a set
of nodes or node indices. Its counterpart in a partition is called a partition element.
The words ‘graph’ and ‘matrix’ will be used almost interchangingly. In particular, the
diagonal block structure of a (permuted according to cluster structure) matrix is in one–
one correspondence with the clustering of the underlying graph of the matrix.

The incidence matrix in Figure 27 was generated with parameters n = 160, g = 60,
p = 0.25, and q = 0.03. The underlying graph of this particular matrix has diameter
four. The generated partition sizes (after rearrangement) equalled 15, 2, 2, 3, 16, 20, 35,
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Figure 27. Randomly generated cluster test matrix. Dots indicate nonzero entries, which are all
equal to one. The indices were aligned according to the generating partition.

36, and 41. A random permutation of this matrix is shown in Figure 28, to illustrate the
serious challenge of finding block structure in matrices (i.e. clustering the underlying
graph).

A singular property of the random cluster/graph generator model is that small partition
elements do not result in clear clusters in the generated graph, and thus introduce the
phenomenon of noise in the testgraphs. This is illustrated by the matrix in Figure 27.
The partition elements of size 1, 2, and 3 correspond with nodes of lowest index, induc-
ing the leftmost columns and uppermost rows. Had clusters of size up to approximately
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Figure 28. Random permutation of the matrix in Figure 27. A random clustering will have low
performance coefficient.

ten been present, the same would apply to them. Apart from modifying the partition
generator, this phenomenon can be remedied by extending the random cluster/graph
generator model by introducing functions f(p, q,n,x) and g(p, q,n,x,y) such that an
edge is realized with probability f(p, q,n,x) if its incident nodes are in the same par-
tition element of size x, and with probability g(p, q,n,x,y) if its incident nodes are
in partition elements of respective sizes x and y . This is in fact part of the generator
implementation in use at CWI. However, all experiments discussed in this chapter were
conducted without using this refinement. Introducing more parameters stand in the
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i a R pf(G,Ci) pf(G2,Ci) pi qi |Ci| d(Ci,P) d(Ci,Ci−1)

1 1 1.3 0.111 0.442 0.100 0.026 2 (84, 4 ) –
2 1 1.4 0.149 0.546 0.150 0.029 3 (48, 12) (0,45)
3 1 1.5 0.149 0.546 0.150 0.029 3 (48, 12) (0,0)
4 1 1.6 0.193 0.598 0.219 0.032 8 (19, 15) (9,38)
5 1 1.7 0.201 0.600 0.240 0.034 11 (18, 20) (6,12)
6 1 1.8 0.186 0.581 0.256 0.042 24 (18, 39) (3,23)
7 1 1.9 0.165 0.526 0.365 0.055 48 (17, 83) (8,53)

d(Ci,Ci−7) d(C,Ci−1)

8 2 1.3 0.111 0.442 0.100 0.026 2 (0,0) –
9 2 1.4 0.148 0.547 0.151 0.029 3 (2,2) (1,47)

10 2 1.5 0.181 0.583 0.189 0.031 6 (7,25) (6,25)
11 2 1.6 0.183 0.581 0.193 0.032 6 (8,21) (7,7)
12 2 1.7 0.205 0.601 0.255 0.035 14 (5,9) (6,28)
13 2 1.8 0.204 0.586 0.281 0.041 24 (13,14) (5,22)
14 2 1.9 0.181 0.543 0.374 0.052 49 (24,17) (6,43)

Table 4. Various MCL runs for the matrix in Figure 27 — pf is an abbreviation of Perf(ormance).

way of standardizing, repeating, comparing, and benchmarking of experiments. More-
over, the presence of noise (nodes and edges not really fitting in any larger scale cluster
structure) is actually interesting in its own right, as it will surely pop up in real-life ap-
plications.

As a first elaborate example, several MCL runs were carried out for the matrix in Fig-
ure 27, with pruning constant set to 50. The results are depicted in Table 4. The
partition P used in constructing this matrix has performance criterion (according to
Definition 22) equal to 0.198 for the matrix itself and 0.607 for the square of the ma-
trix. The partition consists of elements with respective sizes 15, 2, 2, 3, 16, 20, 35, 36,
and 41. The number of clusters found is given in the column under |C|. The distance
between two different clusterings is measured by the pair-valued function d defined in
Section 9.3, Chapter 9. The density of the number of nonzero entries (as a fraction of the
cluster area, which is the sum of the squares of the cluster sizes) is given in the column
labelled pi. The corresponding density of nonzero entries not covered (as a fraction of
the remaining area) is given in the column labelled qi.

The cluster sizes of the ‘best’ clustering in row 12 are respectively 13, 22, 32, 4, 6, 14,
15, 33, 34, and 41. The four largest clusters roughly correspond with the four largest
partition elements — for the clusters of size 15, 33, 34, and 41 the size of the symmetric
difference with a best matching partition element of P is respectively 3, 4, 2, and 4. The
distance pair of this clustering with P is (17,23). The data in the figure shows that
in general either the clustering or the partition is close to their intersection. The same
holds for pairs of clustering at consecutive levels of granularity (corresponding with a
small increase of the inflation power coefficient). This shows that the MCL algorithm
has good properties with respect to continuity. The clustering/partition distances in the
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upper part of the table indicate that the maximum performance value is attained for the
clustering which is approximately closest to the partition. This can be taken as evidence
that the perfomance criterion is a good assistent in measuring the quality of a clustering.
The drop in performance from 0.583 to 5.81 at inflation level 1.6 in the lower part of the
table is a little peculiar, but the fact that the corresponding clusterings are rather close
can easily account for such a small fluctuation. Moreover, it is seen in both parts of
the table that all clusterings which are slightly better than the partition with respect to
the matrix, are slightly worse than the same partition with respect to the square of the
matrix.

Finally, it is interesting to visualize the effect that longer distances have on the result-
ing clustering. To this end, a champion clustering with performance coefficient equal
to 0.214 (resulting from loop weight 3 and inflation 1.7) is used to align the square of
the matrix in Figure 27. The result is depicted in Figure 29. One sees very clearly off-
diagonal bands in the matrix which correspond with (two-step) edges connecting differ-
ent subgraphs corresponding with different diagonal blocks. These two step connections
have ‘helped’ each of the diagonal blocks to become a cluster in the MCL process. Now
it is natural to wonder whether this champion clustering cannot be further improved by
joining the diagonal blocks connected by the bands. The answer is no, and the reason
is that this does improve the clustering with respect to the performance criterion ap-
plied to the square of the graph — which is a mere 0.567 — but it does not improve the
clustering with respect to the performance criterion applied to the graph itself.

12.2 Scaled experiments

In this section two experiments are described in which several graphs with 10000 nodes
are clustered. In the first experiment three graphs are generated using the same un-
derlying partition P, but with different probabilities for the realization of edges within
partition elements. In the second experiment graphs are generated with the same prob-
abilities but with underlying partitions which have different granularities. These graphs
are clustered using the same MCL parametrization for each. The partition P which was
used for generating the first three test graphs has grid parameter g equal to 500 and has
partition element sizes

120, 210, 37, 46, 55, 65, 7, 82, 93, 103, 11, 122, 13, 143, 163, 20, 212 25, 27, 31, 32, 36, 38,
402, 412, 45, 54, 58, 63, 66, 70, 742, 78, 81, 85, 89, 922, 97, 108, 111, 116, 1212, 1252,
129, 131, 137, 1692, 183, 226, 255, 284, 298, 314, 343, 350, 352, 374, 392, 401, 422, 428,
444, 484, 499, 500.

The probability p was chosen equal to 0.1 and the probability q was respectively chosen
as 0.002, 0.004, and 0.006. Three graphs labelled H1, H2, and H3, were generated this
way. A node of H1 in the partition element of size 500 has on average 50 neighbours on
the inside (with respect to this element) and 19 neighbours on the outside. The higher
values of q for H2 and H3 imply that the cluster structure is more concealed in these
graphs. Optimal clustering parameters were sought for each graph using pruning con-
stant k = 200. In doing so three parameters were varied, namely the loop weight a, the
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Figure 29. Square of matrix in Figure 27 aligned according to clustering found by the MCL algo-
rithm. Dots denote nonzero entries, which are positive integers. The presence of off-diagonal
vertical and horizontal bands is explained by the nature of the MCL process.

initial inflation constant r , and the main inflation constant R. The length of the initial
prefix was in each case chosen equal to 2. Good clusterings were sought for each of the
three graphs, judged by performance coefficient only. Parameters were varied according
to their observed effect on the performance coefficient; a few different trials sufficed to
find good parametrizations. The MCL algorithm was again applied holding the corre-
sponding parameters fixed, except for the pruning constant k which was successively
decreased with a decrement of 25. The invariant parts of this setup are summarized in
Table 5 on page 138.
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Table 6 on page 138 shows that the cluster structure found by the MCL algorithm
matches the generating partition P rather well. Note that the size of the 22nd largest
partition element equals 131. The nodes in this partition element have approximately 13
neighbours within the same element (for all three of H1, H2, and H3), and respectively
approximately 20, 40, and 60 neighbours elsewhere (for H1, H2, and H3). For all but two
parametrizations this partition element is clearly recognized as a cluster. It is further-
more noteworthy that the clusterings are not very much affected by the value assumed
by the pruning constant k, as long as it does not become critically low.

In the second experiment eight graphs were generated on 10000 nodes with probabil-
ities p = 0.1 and q = 0.004, that is, the same probabilities used for H2. The un-
derlying partition was generated for each graph separately, where g varied from 300
to 1000. It was ensured (by repeated trials) that each partition generated with grid
size g, g = 300,400, . . . ,1000 had several partition elements of size close to g. Each
graph was clustered using the same set of parameters which worked best for H2, and
the pruning constant was chosen equal to 150. The results are depicted in Table 7 on
page 139. They clearly show that the same parametrization works for graphs with dis-
tinctly different granularity characteristics with respect to their natural cluster structure.
The MCL algorithm does not perform very well for the graph of lowest cluster granularity
(corresponding with grid size g=300), which is explained by the fact that the correspond-
ing generating partition has many clusters of small cardinality — approximately half of
the nodes belong to a partition element of size 110 or less.

12.2.1 Pruning. A pruning scheme was used in which threshold pruning is applied first
followed by exact pruning. Thresholds of the form ctr(c)(1 − t[maxi(ci) − ctr(c)])
(where c is the stochastic column vector to be pruned) seem to work best in practice,
where t is chosen in the range [1.0,7.0]. Threshold pruning was always applied for each
newly computed column vector, at every stage of the process. No attempt to readjust-
ment was made in case thresholding caused the number of nonzero vector entries to
drop below the pruning constant k or if thresholding left a number of nonzero entries
much larger than k. However, early stages of the process need thresholding more se-
verely than the middle stages of the process, as the newly computed column vectors
during expansion tend to have a much larger number of nonzero entries during early
stages. Thresholds that are too harsh during the middle stages have in general an ad-
verse effect on the quality of the resulting clustering. For this reason thresholds of the
form a[ctr(c)]b appear to be disadvantageous, as they are difficult to tune. Using the
threshold ctr(c)(1 − t[maxi(ci) − ctr(c)]) and slowly increasing the parameter t during
the process overcomes this problem. This approach is still a bit crude if t is increased
regardless of the density characteristics of the iterands (such was the setup in conduct-
ing these experiments). It seems quite worthwhile to search for smart pruning schemes
which are cheap to compute and effective during the various stages of the MCL process.

12.2.2 Clusterings associated with intermediate iterands. The implementation that was
used in conducting these experiments computed a (possibly overlapping) clustering for
each MCL iterand M after every expansion step. This was done by defining a directed
graph G on the column indices ofM by creating an arc q → p iffMpq ≥Mqq. The overlap-
ping clustering was computed as the set of all weakly connected components of G. In an
ideal world (where tractability is not an issue and computers use real numbers instead of
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approximate values), the matrix M would have been guaranteed to be dpsd (since all in-
put matrices are symmetric), and the overlapping clustering could have been computed
as the set of all endclasses of the DAG associated withM (according to Theorem 9) joined
with the nodes reaching them.

For the experiments in this section it took the MCL algorithm between 12 and 20 it-
erations (each iteration consisting of one expansion and one inflation step) to reach a
matrix iterand for which the computed clustering was identical to the clustering asso-
ciated with the eventual limit (which was typically reached 5 iterations later). However,
the initial stages exhibited much more dramatic decreases in the number of clusters than
later stages — the number of clusters was always decreasing, never increasing. The table
below supplies the number of clusters and the amount of overlap associated with each
iterand of the run for H2 using pruning constant 150. The numbers are quite typical for
the behaviour of the MCL algorithm during the scaled experiments.

Expansion step #clusters #nodes in overlap

1 10000 0
2 10000 0
3 7438 139
4 3430 1970
5 2455 166
6 1418 92
7 778 102
8 420 119
9 240 45

10 152 41
11 121 28
12 113 18
13 106 8
14 105 3
15 103 1
16 102 0
17 101 0
18 101 0

One of the many things that has not yet been investigated (theoretically nor empirically)
is the relationship (distance) between the clusterings associated with different iterands,
and the depths (i.e. the length of a longest path) of the DAGs that occur. For the type
of graph experimented with here I expect that the depth of the associated DAG will
in general be small, on average at most 2. It is furthermore interesting to investigate
how the MCL algorithm performs for graphs which have lower connectivity and natural
clusters of somewhat larger diameter, but without the strong homogeneity properties
of meshes and grids. Random geometric graphs such as in Figure 2 on page 5 seem
suitable candidates, and I expect that for this type of graphs DAGs may arise that have
larger depth.
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Graph label p q Perf(Hi,P) Cluster parameters

H1 0.1 0.002 0.0876 a=3.0 r=1.25 l=2 R=1.3
H2 0.1 0.004 0.0805 a=3.0 r=1.20 l=2 R=1.3
H3 0.1 0.006 0.0752 a=4.0 r=1.20 l=2 R=1.3

Table 5. Each graph Hi was generated on the same partition P (on 10000 nodes, grid
size 500) with parameters p and q as indicated. Cluster parameters (see Table 1 on
page 112) were chosen after a few trials on each graph. Table 6 gives the result of
clustering each Hi with these parameters for varying pruning constants k.

k pf(Ci(k)) d(Ci(k),P) Best matches? between P and Ci(k)

H1

200 0.0882 (582,738) 0 0 0 0 0 1 0 0 1 0 0 0 0 2 0 1 1 3 4 2 8 7

175 0.0885 (584,780) 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 2 3 4 2 8 5

150 0.0893 (608,881) 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 5 5 4 2 7 5

125 0.0892 (613,938) 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 4 5 2 2 7 6

100 0.0891 (602,927) 1 2 0 0 0 1 0 0 3 0 0 0 0 0 0 1 2 3 6 2 6 9

75 0.0889 (633,1068) 6 8 0 0 0 1 0 0 3 0 0 0 1 0 0 0 1 3 4 3 6 5

H2

200 0.0800 (748,1154) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 3 9 7

175 0.0801 (730,1043) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 3 8 4

150 0.0796 (890, 722) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 2 1 0 9 4

125 0.0794 (764,864) 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 2 1 0 12 9

100 0.0790 (760,964) 1 0 0 0 0 1 9 1 1 0 0 0 0 0 1 0 2 1 3 4 66 8

75 0.0749 (973,993) 5 0 22 8 4 6 67 5 14 7 17 7 3 51 4 2 18 31 21 40 52 26

H3

200 0.0731 (1014,1817) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 4 24 8 17 16

175 0.0731 (1004,1791) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 24 7 22 21

150 0.0730 (995,1786) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 14 6 17 12

125 0.0723 (1045,1734) 2 3 1 1 3 1 2 5 0 2 1 0 9 1 1 1 11 2 14 8 41 18

100 0.0662 (1537,2233) 6 13 2 63 37 27 16 32 17 32 24 43 102 30 62 26 57 30 94 102 . . .

75 0.0444 (3328,6455) 256 320 161 354 236 . . . (more three digit numbers) . . .

Table 6. Ci(k) denotes the clustering of graphHi resulting from an MCL process with pa-
rameters as in Table 5 and pruning constant equal to k. In the second column, pf(Ci(k))
denotes the performance Perf(Hi, Ci(k)).

?The last column gives the sizes of the symmetric difference of the jth largest element
of P (j = 1, . . . ,22), with that cluster of Ci(k) which is the best match for the partition
element.
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g pf(Pg) pf(Cg) d(Cg,Pg) Best matches∗ between Pg and Cg

300 0.0681 0.0650 (2321,3206) 3 1 1 0 0 2 11 4 6 8 8 12 29 10 11 22 18 19 15 27

400 0.0755 0.0733 (1198,1574) 2 0 0 4 0 0 0 10 17 1 1 3 0 2 1 3 6 0 0 9

500 0.0810 0.0810 (740,870) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

600 0.0829 0.0826 (576,632) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

700 0.0843 0.0836 (575,671) 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1

800 0.0838 0.0834 (499,635) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0

900 0.0863 0.0856 (368,407) 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 14 4 5

1000 0.0890 0.0888 (192,225) 1 2 2 2 1 1 1 2 1 2 0 0 1 0 1 0 0 0 1 2

Table 7. For each value of g a partition Pg was generated using g as grid size with
n=10000. A graph Hg was generated using Pg and probabilities p = 0.1 and q = 0.004.
Each graph Hg was clustered using the same MCL parameters a=3, r=1.2, l=2, R=1.3,
k=150. In the second and third column, pf(Pg) and pf(Cg) respectively denote the
performance coefficients Perf(Hg,Pg) and Perf(Hg, Cg).

∗The last column gives the sizes of the symmetric difference of the jth largest element
of Pg (j = 1, . . . ,20), with that cluster of Cg which is the best match for the partition
element.
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A cluster miscellany

This appendix is aimed at a general audience. Topics include the cognitive aspects of
cluster structure, the role of the computer in cluster analysis, general aims and ideas,
a short history of clustering and classification, and some remarks on the usage and
etymology of words in mathematics, in particular those words often occurring in this
thesis. The appendix concludes with a short account of the main contribution of this
thesis, the Markov Cluster algorithm.

1 Of clusters and cognition

A cluster is a) a close group or bunch of similar things growing together or b) a close
group or swarm of people, animals, faint stars, gems, et cetera, according to the Concise
Oxford Dictionary1. Examples of usage are ‘a cluster of berries’, ‘galaxy cluster’, ‘cluster
of molecules’, and ‘cluster of computers’. The usage of the word cluster in the mathemat-
ical discipline Cluster Analysis is really the same, except that only the generic parts of
the definition remain. Thus, plants, animals, people, computers, molecules, and galaxies
are submerged in the sea of things, and as consolation ‘things’ is changed to the classier
‘entities’. The meaning of cluster in a mathematical setting then becomes a close group
of entities. Clearly, a ‘close group’ indicates a remarkable degree of fellowship that is in
contrast with the surrounding parts. Thus, if a garden has seven yew trees (Taxus Bac-
cata) which are dispersed homogeneously across the garden, they cannot be regarded
as forming a cluster together. A point of interest is that in mathematics it is perfectly
acceptable for a cluster to consist of a single element, as this makes reasoning about
clusters a lot easier. So, in this case, the yews are better viewed as seven separate clus-
ters, just considering the garden they are in. However, if all neighbouring gardens have
exactly one yew, then on a larger scale the seven yews may be seen as forming a sin-
gle cluster. Furthermore, if a great yew baron has a plantation farming thousands of
yew trees, then a group of seven yews picked out in the middle is hardly a cluster. On a
larger scale again, all of the thousands of yews do form a giant cluster in the surrounding
landscape of meadows and pastures.

More complex arrangements can be pictured, as in a garden with twelve groups (Fig-
ure 30), each consisting of three yews, where at each different point of the compass
three groups of yews are planted together. This results in different clusters on different
scales, one where twelve groups of three yews are distinguished, and, on a larger scale,
one where four groups of nine yews are distinguished. The picture becomes blurred if a
few extra yews are scattered around the (neglected) garden, some of them standing close
to the neatly arranged groups (Figure 31). At a certain degree of closeness the mind and

1Ninth Edition.
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Figure 30. Garden with yews. Figure 31. Neglected garden.

eye will tend to see a group of yews swallowing up yews standing closely near, but there
is no rule predicting exactly when this will happen. The process is influenced by the rela-
tive size and location of other groups. In general, the way in which local cluster structure
is perceived is affected by the overall perceived structure; a number of yews which the
eye tends to see as a cluster in one configuration may be seen as less related in another
configuration. On the other hand, the perception of cluster structure is also influenced
by the relative sizes of the different yews, i.e. by highly local parameters. Furthermore,
the eye has a tendency to group things together in such a way as to produce balanced
groups, and the degrees of regularity and symmetry of an arrangement also plays a role.
In the picture on the left of Figure 32 the force of regularity tends to prevail, i.e. en-
forcing the perception of two clusters of three elements and four clusters of a single
element. On the right the scales tend to favour a balanced grouping, with two groups of
three elements and one of four. Even in these simple examples it is seen that perceiving
cluster structure is a cognitive event influenced by many parameters. The concept of
cluster is inherently vague, and much to the chagrin of mathematicians, the situation is
more or the less the same in mathematics.

Figure 32. Regularity and balancedness competing.

2 Aims and ends I

Cluster analysis can be described as the study of characterization and recognition of
close groups in a class of entities. The study of recognition means the study of methods
that label entities as belonging to the same group or to different groups. A clustering is
such a labelling or division of the entities into groups, and a method is a recipe which, if
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followed, produces a clustering if one is given a class of entities and a notion of similarity
(closeness) or distance between those entities. Usually, recipes are called algorithms.
With this terminology settled, let us try and see if it is useful, and why the problems in
cluster analysis are interesting and difficult.

Figure 33. Image A. Figure 34. Image B.

What is the use of finding clusterings? One use is as a means of creating a classification
of the entities by partitioning them into groups. The classification then corresponds with
‘the big picture’; it means that structure is attached to some source of information or ob-
servations on entities. This is perhaps best explained by looking at what it takes to equip
a machine with a simple form of vision. Images A and B in Figure 33 represent camera
generated pictures which are sent to a computer, that has to take some action (follow
some recipe) depending on how many objects are present in a picture. For interpreting
a picture, it needs another recipe, because in the picture itself there is no information
about objects, there is only a grid of boxes (called pixels) which may be black or white.
Thus, the entities in this case are black pixels, and a close group of black pixels repre-
sents some object. Clustering amounts to recognizing higher level entities (shapes or
objects) from lower level entities (black pixels).

Animals, c.q. hominides, are very good at extracting patterns from this kind of image. In
fact, they see nothing but structure, so it is hard to recognize the difficulty of the task.
First, it should be stressed that the task is not to find a way of analysing a particular
picture, but to find a method that can be used for analysing an enormous range of pos-
sible pictures. Second, the images look deceptively simple to us because of our cognitive
skills. What if one is asked to recognize ‘objects’ in the following array of pairs of num-
bers?

(0 7)
(1 3)
(1 12)
(2 1)
(2 5)
(2 6)
(2 7)
(2 8)
(2 9)

(2 14)
(3 3)
(3 4)
(3 5)
(3 6)
(3 7)
(3 8)
(3 9)
(3 10)

(3 11)
(4 2)
(4 3)
(4 4)
(4 5)
(5 0)
(5 2)
(5 3)
(5 8)

(5 11)
(6 2)
(6 3)
(6 6)
(6 14)
(7 2)
(7 3)
(8 2)
(8 3)

(8 4)
(8 7)
(8 9)
(8 10)
(8 11)
(8 12)
(9 3)
(9 9)
(9 11)

(9 12)
(9 13)
(9 14)
(10 1)
(10 3)
(10 5)
(10 9)
(10 10)
(10 11)

(10 12)
(10 14)
(11 7)
(11 9)
(11 10)
(11 11)
(11 12)
(11 13)
(11 14)

(12 5)
(12 9)
(12 10)
(12 12)
(12 13)
(13 2)
(13 11)
(13 12)
(13 15)

(14 0)
(14 7)
(14 14)
(15 4)
(15 11)
(15 12)
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This mess of numbers contains exactly the same information2 as image A, and is in
fact essentially the only way that an image can be stored in a computer. In designing
a recipe one is forced to create a list of instructions that can be applied to arbitrary lists
of numbers.

Suppose it is known in advance that the image may contain any number of objects be-
tween 0 and 5, and that an object is never hiding part of another object, but that objects
might be located close to each other. That is at least something; this knowledge can be
used and incorporated into the recipe that the computer is going to follow in deciding in
how many objects there are. Now, it is not hard at all to design a recipe which works for
the picture in Figure 33. But that is not what is required: a recipe is needed which works
well for all different kinds of pictures that can be sent to the computer. There may be
noise present in the picture, like the many loose black pixels in image A, the objects may
have different sizes, shapes can be long and stretched or compact, bent or straight, and
one shape can posses all of these characteristics simultaneously. Two shapes close to-
gether can be hard to distinguish from one long bent shape and noise may further cloud
the issue.

The previous examples illustrate some of the typical challenges in cluster analysis. Devis-
ing a good clustering method for this kind of problem is at least as difficult as answering
how the eye and mind perceive cluster structure. In cases where the complexity of a prob-
lem can be visualized, people, scientists included, expect the results of cluster methods
to match their own interpretation. Now on the one hand the perception of cluster struc-
ture is influenced by changes in context, but on the other hand the perception of cluster
structure may equally wel lead to a perceived change in context. Perception of cluster
structure has to do with interaction of low–level and high–level cognitive functions, and
such interaction is very difficult to catch in a recipe.

The general rule of method design applies that the more restricted the problem area
is (i.e. the less uncertainty there is about possible contexts), the easier it is to design
methods excelling in this area. Different methods that are respectively optimized for
recognizing different kinds of images such as in Figure 31 and Figure 33 will perform
not as well on other kinds of images, and methods that are widely applicable are unlikely
to excel everywhere. The best thing possible is to have a method that can be easily tuned
to different contexts.

3 Aims and ends II

A second use of finding clusters lies in cutting apart a structure such that it stays intact
as much as possible. That sounds funny, so consider Figure 35. Twelve cities are pictured
as little circles, labelled 1, . . .12, and a number of roads connects the cities. Suppose
that the cities should be grouped into different regions, where each region gets its own
road maintenance department. One region would be inefficient (for reasons unknown
to us), and if there are more regions then the number of roads between regions should

2e.g. the (7,2) pair says that starting from the upper left pixel, a black pixel is found when
going 7 pixels to the right and 2 to below.
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Figure 35. Cities and roads.

be minimal (in order to minimize the chance of colliding maintenance teams). A good
candidate for such a grouping or clustering is {1,6,7,10}, {2,3,5}, {4,8,9,11,12}. The
main contribution of this thesis is a powerful new method, the Markov Cluster Algorithm,
that is specifically suited to attacking this kind of problem — where the number of dots
may be orders of magnitudes larger.

There are many real-life domains which can be modelled as a structure like the one in
Figure 35, that is, as a combination of dots and lines. These structures are called graphs
and they play a role whenever there is a notion of objects (or entities) being connected or
not. Entities are then called nodes, and lines are called edges or links. The most appealing
and largest in scale examples are the Internet and the World Wide Web. The Internet
consists of millions of computers which are linked via intricate networks. The World
Wide Web consists of an ever growing amount of web pages3, which refer to each other
in myriads of ways via the so called hyperlinks. Diving into the computer itself, circuits
in chips consist of transistors (nodes), wired together (links). The list of examples is
virtually without limit. Take people as entities, and say there is a connection between
two people if they ever shook hands. This is a graph where the dots are people and
a line corresponds with (at least) one handshake. It is a theory or legend of some kind
that there are on average only six handshakes between two arbitrary different people
on earth4. Note that in this example the link does not correspond with a connection
that also resembles a physical distance, contrary to the cities and roads example from
Figure 35. However, this figure is an abstract picture; it could equally well represent
twelve people, the lines telling which pairs of people ever shook hands.

Many different kinds of connections between people can be considered; e.g. being rela-
tives of the first (or second, third, . . . ) degree; both having a parent born in the same
town; having worked for the same company. In the scientific community, one may
define being connected as having co-authored an article. Many mathematicians know
their Erdős number, which is the distance from the famous and prolific mathematician
Paul Erdős5. If mathematician P has co-authored an article with Q, where Q has co-
authored an article with Erdős, then Q has Erdős number 1, and P has Erdős number 2.

3Currently probably within the billions.
4This may seem improbable, but giving it some thought should at least refute the spontaneous

disbelief. The origin of this conjecture is unknown to me.
5Paul Erdős wrote more than 1500 articles in his career, many of which were jointly written

with other mathematicians.
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Another graph constructed from science takes as nodes, say, all mathematical articles
ever written; two articles are connected in this graph if the subject lists describing their
content share one or more common elements. Such a graph is in a sense a map of the
whole of mathematics, and it is interesting to investigate properties of this map. One
idea is that articles may be related to each other without sharing any element of their
subject lists, perhaps because the same subject is known under different wordings. It
is then natural to assume that the articles must still be close to each other on the map
previously introduced.

Finally it should be noted that the examples in this chapter were chosen because they
have some visual appeal and a low degree of complexity. In the vector model, for slightly
more complex input data, the problems can no longer be visualized such that an observer
or practitioner can test methods against her own intuition. This applies even more to the
graph model; graphs with dozens of nodes and hundreds of links already yield a picture
of an inextricably entangled web.

4 Perspectives

Cluster analysis, aiming at dissecting structures such that they stay intact as much as
possible, yields a relatively new perspective, inspired by the increasing number of phe-
nomena that can be modelled as graphs (structures with nodes and links), such as com-
puter networks and computer chips, databases, document collections, c.q. web pages,
et cetera. In this thesis I argue that there is a subtle but significant difference with the
classic applications of cluster analysis, which are better described by the notion of vec-
tor models rather than graphs. This notion will be introduced in the course of a short
account of cluster analysis history.

The early origins of cluster analysis are found in the classification of populations in
species6 in biology, a discipline which is commonly known as taxonomy. Aristotle was
already herein engaged (writing the book Scala Naturae, i.e. scale of nature), and Carl Lin-
naeus is its most famous contributor. In taxonomy, the entities are different populations
of animals, and observations on how different populations differ in their characteristics
establish a notion of similarity (or conversely, distance) between them. The character-
istics chosen by current taxonomists vary among others from morphological attributes
(e.g. skeleton or bone related measures like type, curvature, weight, measures on fur,
feather, teeth, digestive system and so on) to ecological and geographical data describ-
ing the habitat of populations. Essentially, populations are described by their number
scores on the chosen characteristics, and two populations are ‘close’ if their respective
scores are close. This picture is far from complete, as taxonomists take other factors
into account, such as the ability between populations to produce fertile offspring, the
extent of DNA hybridization, and the number and degree of pairing between chromo-
somes (quoted from [95], page 133). Sticking to the simple model, a list of numbers
(here characterizing a population) is in mathematics called a vector, hence the phrase
vector model.

6And, following species, genera, families, classes, orders, phyla.
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In the 20th century, taxonomists began to seek objective, unbiased methods using such
numerical characteristics of individuals and populations (see [155], page 13). This re-
search is collectively labelled numerical taxonomy. The division between method and
application, i.e. formulation of methods in such abstract terms that they can be applied
to behavioural, biological, or any other kind of data, eventually lead to the recognition
of cluster analysis as a research area of its own, where generic clustering and classifi-
cation methods are studied not tied to any particular context. Taxonomists did not get
rid of the issue of objectivity however, because it turns out that different methods and
different ways of preparing the data yield different results, and that it is impossible to
establish that one method is better than another, except in very specific cases.

Following taxonomy, subsequent applications of cluster analysis are still best described
by the vector model. These include the grouping of medical records in order to find pat-
terns in symptoms and diseases related to characteristics of patients, and the analysis of
behavioural and sociological data for similar purposes. In the first case the data for each
entity (a medical record or patient) is a set of scores on symptoms, body characteristics,
or a combination of both, in the second case the entities are either people or populations
(e.g. cities), and the scores can pertain to economic status, education, crime, health, or
any other sociological phenomenon of interest. Everitt lists several of such applications
([54], page 8).

The difference between vector and graph settings is one of genuinely different types of
topology. In both settings there is a notion of distance or similarity between entities,
but they are conceived in different ways. In the vector model, the distance between
two entities is derived by comparing a set of scores, and calculating a number which
represents the distance between the two entities. The vector model can be applied to
the entities in images A and B, which are the black pixels. Their ‘scores’ are just their
coordinates, and the distance between the black pixels (7,3) and (2,1) in image A is then
for example calculated as the horizontal distance plus the vertical distance, amounting
to 5+ 2 = 7.

In the graph model, there are the two notions of a) being connected or not and b) longer
distance paths going from one entity to another, notions lacking in the vector model.
The Markov Cluster algorithm was inspired by the implications of the path notion for
properties of clusters in the settings of graphs. It hardly could have been conceived in
the classic setting of vector models, and experiments indicate that it is very powerful
particularly in the setting of graphs. Still, the vector model and the graph model have
so many resemblances that it is easy to try and apply the Markov Cluster algorithm to
vector models. This honours a good engineering and scientific principle that theories,
methods, designs, and even machines should always be tried to the limit of what is
possible. By doing so, the practitioner learns about the strengths and weaknesses of
that what is tested, and it may well lead to new insights. This is also the case for the
Markov Cluster algorithm. It is applied to (highly abstract variants of) images such as
in Figures 33 and 34. For some cases it works well, and for others it does not, and it
can be explained and predicted for which classes this is the case. This leads to a shift
of perspective as it is shown that the MCL process can be put to a different use, namely
that of border detection in images. These issues are discussed in Chapter 10.
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5 Words of history and history of words

Since this thesis is all about a recipe called the Markov Cluster Algorithm, some explana-
tory words may be of interest.

1. Algorithm has the meaning of ‘recipe’, a set of instructions for the purpose of achiev-
ing some goal. The man who fathered this word did not live to know that he did. Ja’far
Mohammed Ben Musa lived at the court of the caliphs of Bagdad, and was also known
as al–Khowarazmi (also often transliterated as al–Chwarizmi), meaning ‘the man from
Khwarazm’. Around the year 825 he wrote an arithmetic book explaining how to use (i.e.
giving methods or recipes) the Hindu–Arabic numerals7. This book was later translated
with the Latin title Liber Algorismi, meaning ‘Book of al–Khowarazmi’. Schwartzman
writes in [148]: “The current form algorithm exhibits what the Oxford English Dictionary
calls a ‘pseudo-etymological perversion’: it got confused with the word arithmetic (which
was one of its meanings, and which has several letters in common with it); the result was
the current algorithm.”

An algorithm is something which can be programmed on a computer, that is, the com-
puter can carry out the instructions on the recipe. The most important part of cluster
analysis is cooking up good recipes, and understanding why certain ingredients and pro-
cedures work well together, and why others fail to do so. It should be noted that all
the hard work is done outside of the computer; humans have to supply the recipes,
the ingredients, and the cooking equipment. The computer is just a wired together piece
of junk8 that does exactly what the recipe tells it to do, using the ingredients and equip-
ment that come with the recipe.

2. By pulling himself up by his bootstraps Baron von Münchhausen fathered the word
bootstrapping. In science its abstract meaning is to derive high–level structural descrip-
tions from low–level data without using (a lot of) a priori knowledge. The origin suggests
that bootstrapping problems require some miraculous feat. However, the dull truth is
that no method solves bootstrapping problems entirely satisfactory, which is exactly
what makes them so interesting. The phrase can be used in sentences like The basic
problem in cluster analysis is that of bootstrapping, or Building a sophisticated software
environment requires a lot of bootstrapping, and perhaps Life is the mother of all boot-
straps.

3. Botryology is an obscure term which was meant as a dignified label for the discipline of
cluster analysis, meaning ‘the theory of clusters’. It is formed from the Greek βoτρυσ ,
meaning ‘a cluster of grapes’. In the article ‘The Botryology of Botryology’ the author
I.J. Good puts in an heroic effort to lift the term into mainstream usage, though his
argumentation seems somewhat humorous ([68], page 73):

7Source: [148], page 21.
8Of course, computer manufacturers put a lot of hard work in wiring the junk such that it can

carry out very large recipes very swiftly.
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It seems to me that the subject of clustering is now wide enough and respectable
enough to deserve a name like those of other disciplines, and the existence of
such a name enables one to form adjectives and so on. For example, one can
use expressions such as “a botryological analysis” or “a well-known botryologist
said so and so”. There is another word that serves much the same purpose,
namely “taxonomy”, but this usually refers to biological applications whereas
“botryology” is intended to refer to the entire field, provided that mathematical
methods are used. The subject is so large that it might not be long before there
are professors and departments of botryology. Another possible name would be
aciniformics, but it sounds inelegant. On the other hand, “agminatics” is a good
contender, forming “agminaticist”, etc.

It is an example of scientific word usage that never quite made it. Occasionally, the term
still surfaces though, as in the title of [163]. In my mind I.J. Good will always be well-
known as a botryologist, and as one who profoundly appreciates the aesthetic aspects of
word usage. He gives several references to earlier uses of the word. The earliest reference
is an article written by himself, which may indicate that he fathered the word. It is left
as an exercise for the reader to find the etymology of the constructions aciniformics and
agminatics.

Perhaps it is a witness to the fragmented origin of cluster analysis, i.e. its simultaneous
growth in different disciplines, that a wealth of labels has been associated with it. Harti-
gan gives the following list in [79], page 1: numerical taxonomy, taximetrics, taxonorics,
morphometrics, botryology, nosology, nosography, and systematics.

4. Cluster is related to the Low German kluster, and the Old English clott, meaning lump
or mass, courtesy of Webster’s dictionary. Webster’s concludes its etymological sum-
mary of cluster with ‘more at CLOT’. Looking up ‘clot’ yields the related Middle High
German kloz, meaning lumpy mass or ball, and the indirection ‘more at CLOUT’. Then
‘clout’ yields among others Russian gluda or lump, Latin galla (gall-nut), and the ref-
erence ‘more at GALL’. The word gall is ‘perhaps akin to Greek ganglion cystic tumor,
mass of nerve tissue, [and] Sanskrit glau round lump; basic meaning: ball, rounded ob-
ject’. The intricate ways of language and dictionaries! This gives yet another example of
graph structure in daily life; the nodes or entities are dictionary entries and the links are
the cross-references between them. Linguists study properties of this type of structure.

5. Andrei Andreyevich Markov was a famous Russian mathematician, born 14 June 1856
in Ryazan, died 20 July 1922 in St Petersburg. He is best known for his contributions to
probability theory. His name is connected to many mathematical notions, among them
Markov chain, Markov matrix, Markov moment, and Markov process. It should be noted
that such attributions are made by other mathematicians, usually after the principal
contributor’s work has gained widespread acceptance. A Markov matrix is a special kind
of matrix (see below) which has the property that it is nonnegative, i.e. all its elements
are greater than or equal to zero, and that all its columns (or rows, depending on the
chosen orientation) sum to 1. This thesis rests mainly on two pillars; Markov theory, and
the theory of nonnegative matrices, for which Markov theory formed a thriving source
of inspiration.
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In the mathematical landscape, this thesis is situated somewhere near the disciplines of
the study of nonnegative matrices and matrix analysis. Many concepts are named after
people who made profound contributions, concepts such as Geršgorin discs, Hermit-
ian matrices, the Hadamard–Schur product, the Jordan canonical form, the Kronecker
product, Perron–Frobenius theory, and the Schur product theorem.

6. A matrix is the mathematical object which lies at the heart of the Markov Cluster
algorithm, in particular the matrix subspecies Markov matrix. A matrix is a rectangular
array of entities that are usually just numbers or indeterminates. Examples of matrices
can be found on pages 50, 53, and 66. The word matrix has a rather impressive heritage
and several meanings. Most of them refer to something in which the evolution of new
life or substance is embedded; the word is etymologically related to mater or mother.
Examples of this are the meanings uterus or womb, cradle, and mould (note: the Dutch
word for mould is matrijs, which is etymologically very close to matrix). Webster’s dic-
tionary9 gives the example ‘an atmosphere of understanding and friendliness that is the
matrix of peace’. This generic meaning must be certainly what inspired the makers of
the 1999 Warner Bros science-fiction action movie The Matrix in titling their creation,
in which robots running amok have subjected mankind and cast nearly all humans into
artificial wombs. That is not even the worst part, as the humans are wired into a com-
puter, which causes them to believe that they are leading a normal live. Thus, bodies are
grown, supported, and constrained by a matrix in the form of artificial wombs, and the
mind is similarly treated by a computer–created virtual matrix. In mathematics however,
matrices are very likable beasts, which are used in many different disciplines to great
avail.

Schwartzman ([148], page 132) names two possible entry points for the word matrix in
mathematics. However, Jeff Miller gives a much clearer explanation10 and even cites the
person who actually introduced the word, James Joseph Sylvester (1814–1897). Schwartz-
man’s first remark is that mathematically speaking a matrix generates geometric or alge-
braic transformations. The second is that matrices are arrays of numbers surrounded by
large brackets or parentheses. In both cases the meaning of the verb refers to womb or
matrix-like qualities, and Schwartzman suggests that these congruences lead to the use
of the word matrix. Sylvester himself has the following to say ([15], page 150):

This homaloidal law has not been stated in the above commentary in its form of
greatest generality. For this purpose we must commence, not with a square,
but with an oblong arrangement of terms consisting, suppose, of m lines
and n columns. This will not in itself represent a determinant, but is, as it
were, a Matrix out of which we may form various systems of determinants by
fixing upon a number p, and selecting at will p lines and p columns, the squares
corresponding to which may be termed determinants of order p.

Miller gives the following citation of Kline, found in [107], page 804:

9Webster’s Third New International Dictionary, 1971.
10Source: http://members.aol.com/∼jeff570/mathword.html.
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The word matrix was first used by Sylvester when in fact he wished to refer to a
rectangular array of numbers and could not use the word determinant, though
he was at that time concerned only with the determinants that could be formed
from the elements of the rectangular array.

It is clearly the determinant–generating ability that inspired Sylvester.

7. Walk, random. A random walk is a walk that is governed by the flipping of a coin,
the rolling of a dice, or more generally by any event for which the outcome is a priori
uncertain. Suppose you are walking in a city, and each time you arrive at a crossing you
flip two coins, one after another. There are four possible outcomes, writing H for heads
and T for tails. and you decide to: turn left if the outcome is TH (the first coin is T ,
the second is H), go straight on if the outcome is TT , turn right if it is HT , and turn
around if the outcome is HH. This is a good example of a random walk. One important
aspect is that if you start two or more times from the same departure point, then the
resulting walks will in general be different; a random walk cannot be predicted. Still, a
lot of things can be said about the probability that certain things happen. For example,
one may ask what the chances are that you return to the point from which you departed
after visiting a hundred crossings, or what the chances are that you have returned at
least one time. What are the odds that you visit only different crossings, or that you
visit no more than fifty different crossings? If ten thousand people start a random walk
from the same point, how far will they be away from the departure point after a hundred
steps, on average? One random walk is not predictable, but if you combine very many
of them, then it is often possible to make surprisingly strong statements about them.
The concept of a random walk is a very rich source for scientific research, because many
questions about them (such as posed here) can be answered using mathematical tools
such as Markov matrices, and because many real-world phenomena are well described
by the concept of a random walk.

The Dutch physicist and publicist Ad Lagendijk dedicated an entire column to the ran-
dom walk in De Volksrant d.d. Saturday 11 December 1999. The column is titled11 Walk
of the century. Lagendijk lists several phenomena which can be described using random
walks: the transport of fluids through porous media (e.g. oil through rock), the diffusion
of molecules in gas mixtures or chemical solutions, the way in which people navigate
supermarkets and large stores, and the transport of molecules through the cells of or-
ganisms. He argues that the concept of a random walk deserves to be called the biggest
scientific discovery of the 20th century, because of the power and the fundamental na-
ture of the concept, its wide applicability, its common use in many different scientific
disciplines, and because it has become part of scientific mainstream to the extent that
scientists use it even unconsciously.

The MCL process utilizes random walks for the retrieval of cluster structure in graphs.
It is described in some more detail in the next section. Perhaps confusingly, the word
flow is also used throughout this thesis to describe the working of the MCL process.
Obviously one associates flow with a good swim rather than a random walk, at least for
ordinary mortals. The right perspective is found by pairing the concept of flow with a

11The original title is Wandeling van de eeuw.
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vast collection of random walks. Picture ten thousand people each starting their own
random walk from the same departure point. An observer floating high above them will
see the crowd slowly swirling and dispersing, much as if a drop of ink is spilled into a
water–filled tray.

8. The Markov Cluster Method is Yet Another Cluster Method, in the sense 1 as listed
below. The Jargon File 4.0 has this to say12 about the qualifier yet another, which is an
example of popular language from the world of computers and computer science.

Yet Another: /adj./ [From Unix’s ‘yacc(1)’. ‘Yet Another Compiler-Compiler’, a
LALR parser generator] 1. Of your own work: A humorous allusion often used in
titles to acknowledge that the topic is not original, though the content is. As in
‘Yet Another AI Group’ or ‘Yet Another Simulated Annealing Algorithm’. 2. Of
others’ work: Describes something of which there are already far too many.

6 The Markov Cluster algorithm

The main contributions in this thesis are centred around a new method in cluster anal-
ysis, which I named the Markov Cluster algorithm, abbreviated as MCL algorithm. As
stated before, the algorithm is specifically suited to graph structures such as in Fig-
ure 35. The MCL algorithm is inspired by a simple yet powerful idea. The aim of a
cluster method is to dissect a graph into regions with many edges inside, and with only
few edges between regions. A different way of putting this is that if such regions exist,
then if inside one of them, it is relatively difficult to get out, because there are many
links within the region itself, and only a few going out. The idea is now to simulate
random walks or flow within the whole structure, and to further strengthen flow where
the current is already strong, and to weaken flow where the current is weak. In dif-
ferent wordings, random walks are promoted, e.g. by broadening the pavement, where
the number of pedestrians (i.e. current) is already high, and random walks are demoted
where this number is low, e.g. by narrowing the pavement. The hypothesis supporting
this idea is that cluster structure corresponds with regions of strong current (many ran-
dom walks pass through), separated by borders where the current is weak (relatively
few random walks pass through). If this idea is put to the test with the right tools, it
turns out to work. Flow can be manipulated in this way such that it eventually stabilizes,
where most of the flow weakens to such a large extent that it actually dries up. Different
regions of constant flow remain which are separated by dry borders; these regions can
be sensibly interpreted as clusterings. A symbolic picture representing such a situation
for the graph in Figure 35 is seen in Figure 36, and a sequence of pictures representing
different stages of flow is found on page 7. In these pictures the grey level of a node
indicates how many random walks pass through at a given stage: the darker the node,
the more walks.

12An interesting web resource edited by famous Open Source advocate Eric S. Raymond, found
at http://www.tuxedo.org/∼esr/jargon/. Its sibling the Free On–line Dictionary Of Computing,
http://foldoc.doc.ic.ac.uk/, edited by Denis Howe, is also noteworthy.
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Figure 36. Regions of flow.

Markov theory supplies almost everything needed to manipulate flow as described above.
Flow simulation can be done by taking a suitable Markov matrix, and computing powers
of this matrix. This is the well-known concept of a discrete Markov chain. The only thing
lacking is the strengthening and weakening of flow. That part is supplied by inserting
a new operator in the Markov chain, which can be described in terms of the so called
Hadamard–Schur product. In effect the MCL algorithm draws upon two well-developed
disciplines of mathematics, and this crossbreeding yields fertile offspring.

The beauty of the MCL algorithm is that the method is not actively engaged in find-
ing clusters. Instead, it simulates a process which is inherently affected by any cluster
structure present. The cluster structure leaves it marks on the process, and carrying the
process through eventually shows the full cluster structure. The process parameters can
be varied, i.e. the flow can be strengthened and weakened to a greater or lesser extent.
This parametrization affects the scale on which the cluster structure leaves its marks.
It is shown in Chapter 7 that the process (in particular, the matrices created in it) has
mathematical properties which have a straightforward interpretation in terms of cluster
structure. These results are of particular interest, as it is for the first time that cluster
structure is found via and within a simple algebraic process.

The MCL algorithm generates many new research questions. In this thesis a few of
them are answered, and these answers help in gaining insight in the algebraic process
employed by the algorithm. Mathematics is, contrary to common belief, an ever changing
field of research where results lead to new questions and questions lead to new results.
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Samenvatting

Dit proefschrift heeft als onderwerp het clusteren van grafen door middel van simulatie
van stroming, een probleem dat in zijn algemeenheid behoort tot het gebied der clustera-
nalyse. In deze tak van wetenschap ontwerpt en onderzoekt men methoden die gegeven
bepaalde data een onderverdeling in groepen genereren, waarbij het oogmerk is een on-
derverdeling in groepen te vinden die natuurlijk is. Dat wil zeggen dat verschillende
data-elementen in dezelfde groep idealiter veel op elkaar lijken, en dat data-elementen
uit verschillende groepen idealiter veel van elkaar verschillen. Soms ontbreken zulke
groepjes helemaal; dan is er weinig patroon te herkennen in de data. Het idee is dat
de aanwezigheid van natuurlijke groepjes het mogelijk maakt de data te categoriseren.
Een voorbeeld is het clusteren van gegevens (over symptomen of lichaamskarakteristie-
ken) van patienten die aan dezelfde ziekte lijden. Als er duidelijke groepjes bestaan
in die gegevens, kan dit tot extra inzicht leiden in de ziekte. Clusteranalyse kan al-
dus gebruikt worden voor exploratief onderzoek. Verdere voorbeelden komen uit de
scheikunde, taxonomie, psychiatrie, archeologie, marktonderzoek en nog vele andere
disicplines. Taxonomie, de studie van de classificatie van organismen, heeft een rijke ge-
schiedenis beginnend bij Aristoteles en culminerend in de werken van Linnaeus. In feite
kan de clusteranalyse gezien worden als het resultaat van een steeds meer systematische
en abstracte studie van de diverse methoden ontworpen in verschillende toepassingsge-
bieden, waarbij methode zowel wordt gescheiden van data en toepassingsgebied als van
berekeningswijze.

In de cluster analyse kunnen grofweg twee richtingen onderscheiden worden, naargelang
het type data dat geclassificeerd moet worden. De data-elementen in het voorbeeld hier-
boven worden beschreven door vectoren (lijstjes van scores of metingen), en het verschil
tussen twee elementen wordt bepaald door het verschil van de vectoren. Deze disserta-
tie betreft cluster analyse toegepast op data van het type ‘graaf’. Voorbeelden komen uit
de patroonherkenning, het computer–ondersteund ontwerpen, databases voorzien van
hyperlinks en het World Wide Web. In al deze gevallen is er sprake van ‘punten’ die
verbonden zijn of niet. Een stelsel van punten samen met hun verbindingen heet een
graaf. Een goede clustering van een graaf deelt de punten op in groepjes zodanig dat er
weinig verbindingen lopen tussen (punten uit) verschillende groepjes en er veel verbin-
dingen zijn in elk groepje afzonderlijk. Het eerste deel van de dissertatie, bestaande uit
de hoofdstukken 2 en 3, behandelt de positie van clusteranalyse in het algemeen en de
positie van graafclusteren binnen de clusteranalyse in het bijzonder, alsmede de relatie
van graafclusteren tot het aanverwante probleem van het partitioneren van grafen. In het
cluster probleem zoekt men een ‘natuurlijke’ onderverdeling in groepjes en is het aantal
en formaat van de groepjes niet voorgeschreven. In het partitie probleem zijn aantal
en afmetingen wel voorgeschreven en zoekt men gegeven deze restricties een toewijzing
van de elementen aan de groepjes zodanig dat er een minimale hoeveelheid verbindingen
tussen de groepjes is.
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De dissertatie beschrijft voorts theorie, implementatie en abstracte toetsing van een
krachtig nieuw cluster algoritme voor grafen genaamd Markov Cluster algoritme of MCL
algoritme. Het algoritme maakt gebruik van (en is in feite niet meer dan een schil om)
een algebraisch proces (genaamd MCL proces) gedefinieerd voor Markov grafen, i.e. gra-
fen waarvoor de geassocieerde matrix stochastisch is. In dit proces wordt de aanvangs-
graaf successievelijk getransformeerd door alternatie van de twee operatoren expansie
en inflatie. Expansie is het nemen van de macht van een matrix volgens het klassieke
matrix product. Stochastisch gezien betekent dit het uitrekenen van de overgangskan-
sen behorend bij een meerstapsrelatie. Inflatie valt samen met het nemen van de macht
van een matrix volgens het elementsgewijze Hadamard–Schur product, gevolgd door een
kolomsgewijze herschaling zodat het uiteindelijke resultaat weer een (kolom) stochas-
tische matrix is. Dit is een ongebruikelijke operator in de wereld van de stochastiek;
zijn introductie is geheel en al gemotiveerd door de beoogde werking op grafen waar
clusterstructuur aanwezig is. Het is namelijk te verwachten dat bij meerstapsrelaties
die corresponderen met puntparen liggend binnen een natuurlijke cluster grotere over-
gangskansen zullen horen dan bij puntparen waarvan de punten in verschillende clusters
liggen. De inflatie operator bevoordeelt meerstapsrelaties met grote bijbehorende kans
en benadeelt meerstapsrelaties met kleine bijbehorende kans. De verwachting is dus
dat het MCL proces meerstapsrelaties zal creeeren en bestendigen die horen bij relaties
liggend in één cluster, en dat het alle meerstapsrelaties zal decimeren die behoren bij re-
laties tussen verschillende clusters. Dit blijkt inderdaad het geval te zijn. Het MCL proces
convergeert over het algemeen naar een idempotente matrix die zeer ijl is en bestaat uit
meerdere componenten. De componenten worden gëınterpreteerd als een clustering van
de aanvangsgraaf. Doordat de inflatie operator geparametrizeerd is kunnen clusteringen
op verschillend niveau van granulariteit ontdekt worden.

Het MCL algoritme bestaat ten eerste uit een transformatiestap van een gegeven graaf
naar een stochastische aanvangsgraaf, gebruik makend van het standaard concept van
een willekeurige wandeling op een graaf. Ten tweede vergt het de specificatie van twee
rijen van waarden die de opeenvolgende expansie en inflatie parametrizeringen defini-
eeren. Tenslotte berekent het algoritme het bijbehorende proces en interpreteert het
de resulterende limiet. Het idee om willekeurige wandelingen te gebruiken om clus-
terstructuur te ontdekken is niet nieuw, maar de wijze van uitvoering wel. Het idee
wordt als ‘graafcluster paradigma’ gëıntroduceerd in hoofdstuk 5, gevolgd door enige
combinatorische voorstellen tot het clusteren van grafen. Getoond wordt dat er een
verband is tussen de combinatorische en probabilistische clustermethoden, en dat een
belangrijk onderscheid de localisatiestap is die probabilistische methoden over het al-
gemeen introduceren. Het hoofdstuk besluit met een voorbeeld van een MCL proces
en de formele definitie van zowel proces als algoritme. Notaties en definities zijn dan
reeds gëıntroduceerd in hoofdstuk 4. In hoofdstuk 6 wordt de interpretatiefunctie van
idempotente matrices naar clusteringen geformaliseerd, worden simpele eigenschappen
van de inflatie operator beschreven, en wordt de stabiliteit van MCL limieten en de ge-
associeerde clusteringen geanalyseerd. Het fenomeen van overlappende clusters is in
principe mogelijk13 en maakt intrinsiek deel uit van de interpretatiefunctie, maar blijkt

13De tot nu toe waargenomen overlap van clusters correspondeerde altijd met een graafauto-
morfisme dat het overlappende deel van clusters op zichzelf afbeeldde.
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instabiel te zijn. Hoofdstuk 7 introduceert de klassen van diagonaal symmetrische en
diagonaal positief semi-definiete matrices (matrices die diagonaal gelijkvormig zijn met
een symmetrische respectievelijk positief semi-definiete matrix). Beide klassen worden
in zichzelf overgevoerd door zowel expansie als inflatie14. Getoond wordt dat diagonaal
positief semi-definiete matrices structuur bevatten die de interpretatiefunctie van idem-
potente matrices naar clusteringen generaliseert. Hieruit volgt een preciezere duiding
van het inflatoire effect van de inflatie–operator op het spectrum van de argumentma-
trix. Ontkoppelingsaspecten van grafen en matrices zijn altijd nauw verbonden met ka-
rakteristieken van de geassocieerde spectra. Hoofdstuk 8 beschrijft een aantal bekende
resultaten die ten grondslag liggen aan de meest gebruikte technieken ten behoeve van
het partitioneren van grafen. De hoofdstukken 4 tot en met 8 vormen het tweede deel
van de dissertatie.

Het derde deel doet verslag van experimenten met het MCL algoritme. Hoofdstuk 9
is theoretisch van aard en introduceert functies die gebruikt kunnen worden als maat
voor de kwaliteit van een graafclustering. Ondermeer wordt een generieke maat afgeleid
die uitdrukt hoe goed een karakteristieke vector de massa van een andere (niet nega-
tieve) vector representeert. Elements– of kolomsgewijze toepassing van de maat geeft
een uitdrukking voor de mate waarin een clustering de massa van een gewogen graaf of
matrix representeert. Tevens wordt een metriek op de ruimte van clusteringen of par-
tities afgeleid, die gebruikt wordt om de continüıteitseigenschappen en het onderschei-
dend vermogen van het MCL algoritme te toetsen in hoofdstuk 12. Hoofdstuk 10 doet
verslag van experimenten op kleine symmetrische grafen met welbepaalde dichtheids-
karakteristieken zoals rastervormige grafen. Het MCL algoritme blijkt — experimenteel
— een sterk scheidend vermogen te hebben. Experimenten met buurgrafen15 wijzen uit
dat het algoritme niet geschikt is indien de diameter van de natuurlijke clusters groot
is. Dit verschijnsel kan begrepen worden in termen van de (stochastische) stromings-
eigenschappen van het algoritme. Hoofdstuk 11 gaat in op de schaalbaarheid van het
algoritme. Cruciaal is dat de limiet van het MCL proces over het algemeen zeer ijl is
en dat de iteranden van het proces ijl zijn in een gewogen interpretatie van het begrip
ijl. Dat wil zeggen, de inflatie operator zorgt ervoor dat de meeste nieuwe niet-nul ele-
menten (corresponderend met meerstapsrelaties) zeer klein blijven en uiteindelijk weer
verdwijnen. Dit is des te meer waar naarmate de diameter van de natuurlijke clusters
klein is, en naarmate de connectiviteit van de totale graaf laag is. Dit suggereert dat
tijdens elke expansie stap — die ervoor zorgt dat de matrix vol loopt — de kolommen
van de nieuw berekende matrix uitgedund kunnen worden door simpelweg de k grootste
elementen van een nieuw berekende (stochastische) kolom te nemen, en deze elementen
te herschalen op 1, waar k afhangt van de aanwezige rekencapaciteit. Omdat het bereke-
nen van de k grootste waarden van een vector in principe niet in lineaire tijd kan, blijkt
het in praktijk noodzakelijk een verfijnder schema te hanteren waarin de vector eerst
uitgedund wordt door middel van drempelwaardes die afhangen van homogeniteitsei-
genschappen van de vector. Dit leidt in principe tot een complexiteit in de orde van
grootte O(Nk2), waar N de dimensie van de matrix is. Hoofdstuk 12 doet verslag van

14Voor diagonaal positief semi-definiete matrices geldt dit voor slechts een deel van de para-
metrizeringsruimte van de inflatie operator.

15Rasterachtige grafen gedefinieerd op punten in de Euclidische ruimte.
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experimenten op testgrafen met tienduizend punten waarvan de verbindingen op zo’n
manier (willekeurig) zijn gegenereerd dat een a priori beste clustering bekend is. Deze
grafen hebben natuurlijke clusters met kleine diameter maar hebben als geheel hoge tot
zeer hoge connectiviteit. Het geschaalde MCL algoritme blijkt zeer goede clusteringen
te genereren die dicht bij de a priori bekende clustering liggen. De parameter k kan
laag gekozen worden, maar de prestaties van het algoritme nemen sterker af naarmate
k lager is en de totale connectiviteit van de input graaf hoger. De appendix A cluster
miscellany beginnend op pagina 149 is geschreven voor een algemeen publiek en bevat
korte uiteenzettingen over diverse aspecten van clusteranalyse, zoals de geschiedenis
van het vakgebied en de rol van de computer.
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